Some Definitions

  1. ###Inner product space
    • ###Inner product
  2. ###Hilbert space
    • ###Complete
    • ###Separable
  3. ###Reproducing kernel Hilbert space
    • ###Reproducing property

Kernel Methods in Machine Learning

Advantages of RKHS in Machine Learning

  • ##Powerful and flexible models can be defined.

  • ##Many results and algorithms for linear models in Euclidean spaces can be generalized to RKHS.

  • ##Learning theory assures that effective learning in RKHS is possible, for instance, by means of regularization.

Example - Ridge Regression

Objective : Minimize $\|A\mathbf{x}-\mathbf{b}\|^2_2+ \lambda\| \mathbf{x}\|^2_2$

Explicit solution : $\hat{x} = (A^{T}A+ \lambda I )^{-1}A^{T}\mathbf{b}$

Kernelization $\implies$ $\hat{x} = (K+ \lambda I )^{-1}A^{T}\mathbf{b}$


In [ ]: