In [1]:
import altair.vegalite.v2 as vl
from altair.datasets import load_dataset
In [2]:
cars = load_dataset('cars')
In [3]:
cars.head()
Out[3]:
In [4]:
vl.data_transformers.enable('json')
In [5]:
spec = {
"data": vl.pipe(cars, vl.data_transformers.get()),
"vconcat": [{
"selection": {
"brush": {"type": "interval"}
},
"mark": "point",
"encoding": {
"x": {"field": "Horsepower","type": "quantitative"},
"y": {"field": "Miles_per_Gallon","type": "quantitative"}
}
}, {
"transform": [
{"filter": {"selection": "brush"}}
],
"mark": "point",
"encoding": {
"x": {
"field": "Acceleration", "type": "quantitative",
"scale": {"domain": [0,25]}
},
"y": {
"field": "Displacement","type": "quantitative",
"scale": {"domain": [0, 500]}
}
}
}]
}
To render in the classic notebook run this line:
In [3]:
vg.renderers.enable('notebook')
To render in JupyterLab and nteract, run this
In [ ]:
vg.renderers.enable('default')
In [12]:
vl.renderers.get()(spec)
Out[12]:
In [13]:
vl.vegalite(spec, validate=True)
In [9]:
vl.renderers.enable('json')
In [10]:
vl.vegalite(spec, validate=True)