In [17]:
    
# Reload when code changed:
%load_ext autoreload
%autoreload 2
%pwd
import os 
import sys
path = "../"
sys.path.append(path)
#os.path.abspath("../")
print(os.path.abspath(path))
    
    
In [18]:
    
import pandas as pd
import numpy as np
import json
import timeit
import time
import core
import importlib
import re
importlib.reload(core)
import logging
importlib.reload(core) 
try:
    logging.shutdown()
    importlib.reload(logging)
except:
    pass
from event_handler import EventHandler
print(core.__file__)
pd.__version__
    
    
    Out[18]:
In [19]:
    
root_directory = 'D:/github/w_vattenstatus/ekostat_calculator'#"../" #os.getcwd()
workspace_directory = root_directory + '/workspaces' 
resource_directory = root_directory + '/resources'
user_id = 'test_user'
    
In [20]:
    
print(root_directory)
paths = {'user_id': user_id, 
         'workspace_directory': root_directory + '/workspaces', 
         'resource_directory': root_directory + '/resources', 
         'log_directory': 'D:/github' + '/log', 
         'test_data_directory': 'D:/github' + '/test_data',
         'cache_directory': 'D:/github/w_vattenstatus/cache'}
    
    
In [21]:
    
t0 = time.time()
ekos = EventHandler(**paths)
print('-'*50)
print('Time for request: {}'.format(time.time()-t0))
    
    
    
    
    
In [22]:
    
workspace_alias = 'kustzon_selection'
ekos.print_workspaces()
    
    
In [23]:
    
workspace_uuid = ekos.get_unique_id_for_alias(workspace_alias = workspace_alias)
print(workspace_uuid)
    
    
In [24]:
    
workspace_alias = ekos.get_alias_for_unique_id(workspace_uuid = workspace_uuid)
    
In [25]:
    
ekos.load_workspace(unique_id = workspace_uuid)
    
    
    
    
    
    Out[25]:
In [26]:
    
w = ekos.get_workspace(workspace_uuid = workspace_uuid)
len(w.data_handler.get_all_column_data_df())
    
    Out[26]:
In [27]:
    
subset_alias = 'SE1_selection'
subset_uuid = ekos.get_unique_id_for_alias(workspace_alias = workspace_alias, subset_alias = subset_alias)
    
In [28]:
    
w.get_step_object(step = 3, subset = subset_uuid).calculate_quality_element(quality_element = 'nutrients_sw')
    
    
In [29]:
    
w.get_step_object(step = 3, subset = subset_uuid).quality_element['Nutrients summer-winter'].results.head()
    
    
In [17]:
    
w.get_step_object(step = 3, subset = subset_uuid).calculate_quality_element(subset_unique_id = subset_uuid, quality_element = 'Phytoplankton', class_name = 'QualityElementPhytoplankton')
    
    
In [19]:
    
merge_on = ['VISS_EU_CD', 'WATER_BODY_NAME', 'WATER_TYPE_AREA']
indicator_name = 'qe_nutrients'
# current
df = w.get_step_object(step = 3, subset = subset_uuid).quality_element['Nutrients'].sld.load_df(indicator_name)
kolumner = df.columns
kolumner
    
    Out[19]:
In [21]:
    
import re
    
In [22]:
    
these_cols = [col for col in kolumner if re.search(indicator_name + r'$', col)]
df2 = df[these_cols + merge_on]
df2.rename(columns = {col: col.strip(indicator_name) for col in these_cols})
    
    Out[22]:
In [ ]:
    
    
In [23]:
    
df
    
    Out[23]:
In [66]:
    
{col: col.strip(indicator_name) for col in these_cols}
    
    Out[66]:
In [77]:
    
tolset = w.get_step_object(step = 2, subset = subset_uuid).get_indicator_tolerance_settings('indicator_din_winter')
    
In [96]:
    
boolean_list = df['STATUS'] == 'HIGH'
df.loc[boolean_list, 'STATUS'] = 'HIGH2'
    
In [ ]:
    
w.get_step_object(step = 3, subset = subset_uuid).quality_element['Nutrients'].results[['VISS_EU_CD','WATER_BODY_NAME','WATER_TYPE_AREA','STATUS_NUTRIENTS','mean_EQR','MEAN_N_EQR','EQR_N_winter_mean','global_EQR_ntot_summer','MEAN_P_EQR','EQR_P_winter_mean','global_EQR_ptot_summer'
]].to_csv('D:/Nutrients'+subset_alias+'.txt', float_format='%.3f', header = True, index = None, sep = '\t')
    
In [ ]:
    
#ekos.get_workspace(unique_id = workspace_uuid, alias = workspace_alias).delete_alldata_export()
    
In [ ]:
    
#%%timeit
ekos.load_data(workspace_uuid = workspace_uuid)
    
In [ ]:
    
print('subsetlist', w.get_subset_list())
    
In [ ]:
    
w.data_handler.all_data.head()
    
In [ ]:
    
w.apply_data_filter(step = 0) # This sets the first level of data filter in the IndexHandler
    
In [ ]:
    
#w.copy_subset(source_uuid='default_subset', target_alias='period_2007-2012_refvalues_2017')
    
In [ ]:
    
subset_alias = 'period_2007-2012_refvalues_2017'
subset_uuid = ekos.get_unique_id_for_alias(workspace_alias = workspace_alias, subset_alias = subset_alias)
w.set_data_filter(subset = subset_uuid, step=1, 
                         filter_type='include_list', 
                         filter_name='MYEAR', 
                         data=['2007', '2008', '2009', '2010', '2011', '2012']) 
w.set_data_filter(subset = subset_uuid, step=1, 
                         filter_type='include_list', 
                         filter_name='viss_eu_cd', data = ['SE584340-174401', 'SE581700-113000', 'SE654470-222700', 'SE633000-195000', 'SE625180-181655'])
                         #data=['SE584340-174401', 'SE581700-113000', 'SE654470-222700', 'SE633000-195000', 'SE625180-181655']) 
                         #wb with no data for din 'SE591400-182320'
f1 = w.get_data_filter_object(subset = subset_uuid, step=1) 
print(f1.include_list_filter)
    
In [ ]:
    
print('subset_alias:', subset_alias, '\nsubset uuid:', subset_uuid)
    
In [ ]:
    
f1 = w.get_data_filter_object(subset = subset_uuid, step=1) 
print(f1.include_list_filter)
    
In [ ]:
    
w.apply_data_filter(subset = subset_uuid, step = 1)
    
In [ ]:
    
w.get_step_object(step = 2, subset = subset_uuid).load_indicator_settings_filters()
    
In [ ]:
    
w.get_available_indicators(subset= subset_uuid, step=2)
    
In [ ]:
    
#list(zip(typeA_list, df_step1.WATER_TYPE_AREA.unique()))
#indicator_list = w.get_available_indicators(subset= subset_uuid, step=2)
indicator_list = ['oxygen','din_winter','ntot_summer', 'ntot_winter', 'dip_winter', 'ptot_summer', 'ptot_winter','bqi', 'biov', 'chl', 'secchi']
#indicator_list = ['din_winter','ntot_summer', 'ntot_winter', 'dip_winter', 'ptot_summer', 'ptot_winter']
#indicator_list = ['biov', 'chl']
#indicator_list = ['bqi', 'secchi']
#indicator_list = ['bqi', 'secchi'] + ['biov', 'chl'] + ['din_winter']
indicator_list.remove('din_winter')
# indicator_list = ['dip_winter', 'ntot_winter', 'ptot_winter']
indicator_list = ['indicator_' + indicator for indicator in indicator_list]
    
In [ ]:
    
print('apply indicator data filter to {}'.format(indicator_list))
for indicator in indicator_list:
    w.apply_indicator_data_filter(step = 2, 
                          subset = subset_uuid, 
                          indicator = indicator)#,
                        # water_body_list = test_wb)
    #print(w.mapping_objects['water_body'][wb])
    #print('*************************************')
#df = w.get_filtered_data(subset = subset_uuid, step = 'step_2', water_body = 'SE625180-181655', indicator = 'indicator_din_winter').dropna(subset = ['DIN'])
    
In [ ]:
    
w.get_step_object(step = 3, subset = subset_uuid).indicator_setup(subset_unique_id = subset_uuid, indicator_list = indicator_list)
    
In [ ]:
    
def concat_df(df, save_df, filename, water_body, indicator_object):
            #concatenate results
            if type(save_df) is pd.DataFrame:
                save_df = pd.concat([save_df, df])
            elif os.path.exists(indicator_object.result_directory + filename + '.txt'):
                save_df = indicator_object.sld.load_df(file_name = filename)
                
                save_df = pd.concat([save_df, df])
            else:
                save_df = df
            #save_df['new_index'] = [str(ix) +'_' + wb for ix, ind, wb in zip(save_df.index, indicator_object.name, save_df.VISS_EU_CD)]
            #save_df.set_index(keys = 'new_index')
            return save_df
    
In [ ]:
    
w.get_step_object(step = 3, subset = subset_uuid).indicator_objects['indicator_biov'].\
    get_water_body_indicator_df(water_body = 'SE584340-174401')
save_df = False
for ind in indicator_list:
    for wb in ['SE584340-174401', 'SE581700-113000', 'SE654470-222700', 'SE633000-195000', 'SE625180-181655']:
        ind_obj = w.get_step_object(step = 3, subset = subset_uuid).indicator_objects[ind]
        df = ind_obj.get_water_body_indicator_df(water_body = wb)
        save_df = concat_df(df, save_df, 'test', wb, ind_obj)
    
In [ ]:
    
save_df['period'] = str(np.min(save_df['YEAR'])) +'-'+ str(np.max(save_df['YEAR']))
save_df.head()
    
In [ ]:
    
str(np.min(save_df['YEAR'])) +'-'+ str(np.max(save_df['YEAR']))
    
In [ ]:
    
save_df.to_csv('D:/github/ekostat_calcR-master/data/'+subset_alias+'.txt', float_format='%.3f', header = True, index = None, sep = '\t')
    
In [ ]:
    
#w.get_step_object(step = 3, subset = subset_uuid).calculate_status(indicator_list = indicator_list)
    
In [ ]:
    
subset_alias
    
In [ ]:
    
#%matplotlib inline
#import seaborn as sns
#for name, group in ind_obj.classification_results['status_by_date'].groupby('VISS_EU_CD'):
    #group['date'] = pd.to_datetime(group.SDATE)
    #group.dropna(subset = ['date', 'DIN'])
    #sns.tsplot(data = group.to_dict(), time = 'SDATE', value = 'DIN', condition = 'STATUS', legend = True)
#    group.plot('SDATE', ['DIN', 'REFERENCE_VALUE'], title = name + group.WATER_TYPE_AREA.values[0], marker ='*')
    
In [ ]:
    
#name + group.WATER_TYPE_AREA.values[0]