In [1]:
import os
import sys
import datetime
import core
import ipywidgets as widgets
from ipywidgets import interact, interactive, fixed, interact_manual
In [2]:
import importlib
importlib.reload(core)
print(os.getcwd())
In [5]:
active_ws = core.WorkSpace()
In [6]:
active_ws.show_settings()
In [9]:
active_ws.first_filter.set_filter('TYPE_AREA', '2')
active_ws.show_settings()
In [3]:
def return_input(value):
return value
In [4]:
start_year = interactive(return_input,
value = widgets.Dropdown(
options=[2009, 2010, 2011, 2012, 2013],
value=2009,
description='Select start year:',
disabled=False)
)
end_year = interactive(return_input,
value = widgets.Dropdown(
options=[2011, 2012, 2013, 2014, 2015, 2016],
value=2015,
description='Select start year:',
disabled=False)
)
In [5]:
from IPython.display import display
display(start_year, end_year)
In [6]:
print(start_year.result, end_year.result)
In [9]:
test_widget = core.jupyter_eventhandlers.MultiCheckboxWidget(['Bottenfauna', 'Växtplankton','Siktdjup','Näringsämnen'])
In [10]:
test_widget # Display the widget
In [3]:
if __name__ == '__main__':
nr_marks = 60
print('='*nr_marks)
print('Running module "lv_test_file.py"')
print('-'*nr_marks)
print('')
#root_directory = os.path.dirname(os.path.abspath(__file__)) # works in
root_directory = os.getcwd() # works in notebook
resources_directory = root_directory + '/resources'
filter_directory = root_directory + '/workspaces/default/filters'
data_directory = root_directory + '/workspaces/default/data'
# est_core.StationList(root_directory + '/test_data/Stations_inside_med_typ_attribute_table_med_delar_av_utsjö.txt')
core.ParameterList()
#--------------------------------------------------------------------------
print('{}\nSet directories and file paths'.format('*'*nr_marks))
raw_data_file_path = data_directory + '/raw_data/data_BAS_2000-2009.txt'
first_filter_data_directory = data_directory + '/filtered_data'
first_data_filter_file_path = filter_directory + '/selection_filters/first_data_filter.txt'
winter_data_filter_file_path = filter_directory + '/selection_filters/winter_data_filter.txt'
summer_data_filter_file_path = filter_directory + '/selection_filters/summer_data_filter.txt'
tolerance_filter_file_path = filter_directory + '/tolerance_filters/tolerance_filter_template.txt'
In [4]:
print('{}\nInitiating filters'.format('*'*nr_marks))
first_filter = core.DataFilter('First filter', file_path = first_data_filter_file_path)
winter_filter = core.DataFilter('winter_filter', file_path = winter_data_filter_file_path)
winter_filter.save_filter_file(filter_directory + '/selection_filters/winter_data_filter_save.txt') # mothod available
summer_filter = core.DataFilter('summer_filter', file_path = summer_data_filter_file_path)
summer_filter.save_filter_file(filter_directory + '/selection_filters/summer_data_filter_save.txt') # mothod available
tolerance_filter = core.ToleranceFilter('test_tolerance_filter', file_path = tolerance_filter_file_path)
print('done\n{}.'.format('*'*nr_marks))
In [5]:
print('{}\nLoading reference values'.format('*'*nr_marks))
core.RefValues()
core.RefValues().add_ref_parameter_from_file('DIN_winter', resources_directory + '/classboundaries/nutrients/classboundaries_din_vinter.txt')
core.RefValues().add_ref_parameter_from_file('TOTN_winter', resources_directory + '/classboundaries/nutrients/classboundaries_totn_vinter.txt')
core.RefValues().add_ref_parameter_from_file('TOTN_summer', resources_directory + '/classboundaries/nutrients/classboundaries_totn_summer.txt')
print('done\n{}.'.format('*'*nr_marks))
In [6]:
# Handler (raw data)
raw_data = core.DataHandler('raw')
raw_data.add_txt_file(raw_data_file_path, data_type='column')
In [7]:
# Use first filter
filtered_data = raw_data.filter_data(first_filter)
# Save filtered data (first filter) as a test
filtered_data.save_data(first_filter_data_directory)
# Load filtered data (first filter) as a test
loaded_filtered_data = core.DataHandler('first_filtered')
loaded_filtered_data.load_data(first_filter_data_directory)
In [8]:
qf_NP = core.QualityFactorNP()
# use set_data_handler to load the selected data to the QualityFactor
qf_NP.set_data_handler(data_handler = loaded_filtered_data)
Out[8]:
In [9]:
print('{}\nApply season filters to parameters in QualityFactor\n'.format('*'*nr_marks))
# First general filter
qf_NP.filter_data(data_filter_object = first_filter)
# winter filter
qf_NP.filter_data(data_filter_object = winter_filter, indicator = 'TOTN_winter')
qf_NP.filter_data(data_filter_object = winter_filter, indicator = 'DIN_winter')
# summer filter
qf_NP.filter_data(data_filter_object = summer_filter, indicator = 'TOTN_summer')
print('done\n{}.'.format('*'*nr_marks))
In [11]:
print('{}\nApply tolerance filters to all indicators in QualityFactor and get result\n'.format('*'*nr_marks))
qf_NP.get_EQR(tolerance_filter)
In [12]:
print(qf_NP.class_result)
print('-'*nr_marks)
print('done')
print('-'*nr_marks)
In [ ]: