In [2]:
from tvb.simulator.lab import *
In [3]:
#rs.configure()
LOG.info("Configuring...")
In [5]:
#Initialise a Model, Coupling, and Connectivity.
oscillator = models.Generic2dOscillator()
white_matter = connectivity.Connectivity(load_default=True)
white_matter.speed = numpy.array([4.0])
white_matter_coupling = coupling.Linear(a=0.0154)
In [6]:
#Initialise an Integrator
heunint = integrators.HeunDeterministic(dt=2 ** -6)
In [7]:
#Initialise some Monitors with period in physical time
momo = monitors.Raw()
mama = monitors.TemporalAverage(period=2 ** -2)
#Bundle them
what_to_watch = (momo, mama)
In [8]:
#Initialise a Simulator -- Model, Connectivity, Integrator, and Monitors.
sim = simulator.Simulator(model=oscillator, connectivity=white_matter,
coupling=white_matter_coupling,
integrator=heunint, monitors=what_to_watch)
sim.configure()
simulation_length = numpy.array([2 ** 6, ])
In [9]:
# Define a model parameter as a function of time
equation = True
par_length = simulation_length[0] / sim.integrator.dt / mama.istep
# a) as an equally spaced range
if not equation:
a = numpy.r_[0.0:4.2:par_length.astype(complex)]
# b) using an Equation datatype
else:
t = numpy.linspace((sim.integrator.dt * mama.istep) / 2,
float(simulation_length[0]),
par_length)
eqn_t = equations.Gaussian()
eqn_t.parameters["amp"] = 4.2
eqn_t.parameters["midpoint"] = simulation_length[0] / 2.0
eqn_t.pattern = t
a = eqn_t.pattern
In [10]:
LOG.info("Starting simulation...")
#Perform the simulation
raw_data, raw_time = [], []
tavg_data, tavg_time = [], []
for raw, tavg in sim(simulation_length=float(simulation_length[0])):
if not raw is None:
raw_time.append(raw[0])
raw_data.append(raw[1])
if not tavg is None:
tavg_time.append(tavg[0])
tavg_data.append(tavg[1])
# Change a model parameter at runtime
sim.model.a = a[len(tavg_time) - 1]
LOG.info("Finished simulation.")
In [11]:
#Plot defaults in a few combinations
#Make the lists numpy.arrays for easier use.
RAW = numpy.array(raw_data)
TAVG = numpy.array(tavg_data)
#Plot raw time series
figure(1)
plot(raw_time, RAW[:, 0, :, 0])
title("Raw -- State variable 0")
figure(2)
plot(raw_time, RAW[:, 1, :, 0])
title("Raw -- State variable 1")
#Plot temporally averaged time series + parameter
figure(3)
plot(tavg_time, TAVG[:, 0, :, 0])
plot(tavg_time, a, 'r', linewidth=2)
title("Temporal average")
#Show them
show()