In [ ]:
import json
from utils import load_items
with open('parameters.json', 'r') as infile:
params = json.load(infile)
RESIZE_X = params['resize']['x']
RESIZE_Y = params['resize']['y']
ITEM_FOLDER = params['item_folder']
items = load_items(ITEM_FOLDER)
In [ ]:
import cv2, glob
from utils import imread_rgb, imread_gray, compute_colors
def worker(item):
folder = ITEM_FOLDER + '/' + item + '/'
files = glob.glob(folder + '*.png')
for filename in files:
image_RGB = imread_rgb(filename)
if not image_RGB is None:
image_RGB = cv2.resize(image_RGB,(RESIZE_X,RESIZE_Y))
file_mask = filename[:-4] + '_mask.pgm'
mask = imread_gray(file_mask)
hist, cc = compute_colors(image_RGB, mask)
dominant_colors = {'hist': hist,
'cluster_centers': map(lambda t: list(t), cc)}
with open(filename[:-4] + '_dc.json', 'w') as outfile:
json.dump(dominant_colors, outfile)
In [ ]:
%%time
from multiprocessing import Pool
print('Computing Dominant colors of images')
print('* resized to %d x %d' % (RESIZE_X,RESIZE_Y))
print('* LAB space')
print('* KMeans')
#print('* MiniBatchKMeans')
pool_size = 6
pool = Pool(pool_size)
result = []
for item in items:
result.append( pool.apply_async(worker, (item,)) )
pool.close()
pool.join()
for r in result:
r.get()
In [ ]:
import glob
from utils import ...
item_view = []
VVV = []
for item in items:
folder = ITEM_FOLDER + '/' + item + '/'
files = glob.glob(folder + '*_XXX.YYY')
for filename in files:
...
item_view.append(filename)
VVV.append(len(des))
In [ ]:
from matplotlib import pyplot as plt
%matplotlib inline
plt.hist(VVV,bins=60);
In [ ]:
[(ns, str(iv.split('/')[-1][:-9])) for ns, iv in sorted(zip(VVV,item_view), reverse=True) if ns>2000]
In [ ]:
[(ns, str(iv.split('/')[-1][:-9])) for ns, iv in sorted(zip(VVV,item_view), reverse=True) if ns<50]
In [ ]:
from matplotlib import pyplot as plt
%matplotlib inline
In [ ]:
import cv2, numpy as np
from ipywidgets import interact
from utils import imread_rgb, plot_colors
def load_and_plot(item,view):
try:
prefix = ITEM_FOLDER + '/' + item + '/' + item + '_' + view
filename = prefix + '.png'
image_RGB = imread_rgb(filename)
if not image_RGB is None:
with open(filename[:-4] + '_dc.json', 'r') as infile:
dc = json.load(infile)
hist = dc['hist']
cc = dc['cluster_centers']
bar = plot_colors(hist, cc)
plt.subplot(121); plt.imshow(image_RGB); plt.axis('off');
plt.subplot(122); plt.imshow(bar); plt.axis('off');
except (IOError, OSError):
print('File not found')
In [ ]:
views = ['top_01','top-side_01','top-side_02','bottom_01','bottom-side_01','bottom-side_02']
interact(load_and_plot,item=items,view=views);
In [ ]:
for item in items:
for view in views:
print(item + '_' + view)
load_and_plot(item,view)
plt.show()
In [ ]:
from matplotlib import pyplot as plt
%matplotlib inline
In [ ]:
import cv2, numpy as np
from ipywidgets import interact
from utils import imread_rgb, imread_gray, compute_colors, plot_colors
def compute_and_plot(item,view):
prefix = ITEM_FOLDER + '/' + item + '/' + item + '_' + view
filename = prefix + '.png'
image_RGB = imread_rgb(filename)
if not image_RGB is None:
image_RGB = cv2.resize(image_RGB,(RESIZE_X,RESIZE_Y))
filename = prefix + '_mask.pgm'
mask = imread_gray(filename)
plt.subplot(121); plt.imshow(image_RGB); plt.axis('off');
hist, cc = compute_colors(image_RGB, mask)
bar = plot_colors(hist, cc)
plt.subplot(122); plt.imshow(bar); plt.axis('off'); plt.title(item + '_' + view);
In [ ]:
views = ['top_01','top-side_01','top-side_02','bottom_01','bottom-side_01','bottom-side_02']
interact(compute_and_plot,item=items,view=views);
In [ ]:
for item in items:
for view in views:
print(item + '_' + view)
plot(item,view)
plt.show()