In [1]:
%matplotlib inline
import numpy as np
from ecell4 import *
In [2]:
Q10 = 3.0
GNa = 120.0 # mS/cm^2
GK = 36.0 # mS/cm^2
gL = 0.3 # mS/cm^2
EL = -64.387 # mV
ENa = 40.0 # mV
EK = -87.0 # mV
Cm = 1.0 # uF/cm^2
T = 6.3 # degrees C
Iext = 10.0 # nA
with reaction_rules():
Q = Q10 ** ((T - 6.3) / 10)
alpha_m = -0.1 * (Vm + 50) / (exp(-(Vm + 50) / 10) - 1)
beta_m = 4 * exp(-(Vm + 75) / 18)
~m > m | Q * (alpha_m * (1 - m) - beta_m * m)
alpha_h = 0.07 * exp(-(Vm + 75) / 20)
beta_h = 1.0 / (exp(-(Vm + 45) / 10) + 1)
~h > h | Q * (alpha_h * (1 - h) - beta_h * h)
alpha_n = -0.01 * (Vm + 65) / (exp(-(Vm + 65) / 10) - 1)
beta_n = 0.125 * exp(-(Vm + 75) / 80)
~n > n | Q * (alpha_n * (1 - n) - beta_n * n)
gNa = (m ** 3) * h * GNa
INa = gNa * (Vm - ENa)
gK = (n ** 4) * GK
IK = gK * (Vm - EK)
IL = gL * (Vm - EL)
~Vm > Vm | (Iext - (IL + INa + IK)) / Cm
hhm = get_model()
In [3]:
for rr in hhm.reaction_rules():
print(rr.as_string())
In [4]:
run_simulation(np.linspace(0, 100, 1001), model=hhm, y0={'Vm': -75}, species_list=['Vm'])
In [5]:
a = 0.7
b = 0.8
c = 12.5
Iext = 0.5
with reaction_rules():
~u > u | -v + u - (u ** 3) / 3 + Iext
~v > v | (u - b * v + a) / c
fnm = get_model()
In [6]:
for rr in fnm.reaction_rules():
print(rr.as_string())
In [7]:
run_simulation(np.linspace(0, 200, 501), model=fnm)
In [8]:
run_simulation(np.linspace(0, 200, 501), model=fnm, # return_type='nyaplot',
opt_kwargs={'x': 'u', 'y': ['v']})