In [1]:
import numpy as np
import matplotlib.pyplot as plt
N = 1000
SIGMA_EPS = 10
THETA = [0.9]
MU = 800
epsilon = np.random.normal(scale=SIGMA_EPS, size=(N,))
Y = np.ones((N,))*MU
for n in range(1,len(epsilon)):
Y[n] = MU + (Y[n-1]-MU)*THETA[0] + epsilon[n]
plt.figure(figsize=(14,4))
plt.plot(Y)
plt.title('AR(1) model')
plt.grid()
plt.show()
In [2]:
from statsmodels.tsa.stattools import acf
def acf_hat (x):
n = len(x)
x = x - x.mean()
r = np.correlate(x,x,mode='full')[-n:]
return r/(n*x.var())
# estimated ACF
plt.figure(figsize=(12,4))
plt.plot(acf_hat(Y)[:100])
plt.grid()
# theoretical ACF
theoretical = THETA[0]**np.arange(N)
plt.plot(theoretical[:100])
# from statsmodel
acf_sm, qstat, pval = acf(Y, nlags=100, qstat=True)
plt.plot(acf_sm, '+')
plt.show()
In [3]:
from statsmodels.tsa.arima_model import ARIMA
model = ARIMA(Y, (1,0,0)).fit()
print (model.summary())
In [4]:
# Plot the residuals and test for their correlation
plt.figure(figsize=(12,4))
plt.plot(Y)
plt.plot(model.fittedvalues, '--+')
plt.plot(model.resid, '--')
plt.grid()
plt.legend(['Truth', 'Predicted', 'Residual'])
plt.show()
In [5]:
import pandas as pd
from statsmodels.api import qqplot
resid_df = pd.DataFrame(model.resid)
resid_df.plot(kind='kde')
qqplot(model.resid)
plt.show()
In [25]:
acf_res, qstat, pval = acf(model.resid, nlags=100, qstat=True)
plt.stem(acf_res,)
plt.hlines(0.05, 0,100, linestyle='dashed')
plt.hlines(-0.05, 0,100, linestyle='dashed')
plt.show()
In [7]:
yhat, std_err, confint = model.forecast()
print ("Predicted value = {}, StdErr = {}, Confidence Interval = {}".format(yhat, std_err, confint))