In [6]:
%matplotlib inline

Load data


In [7]:
from __future__ import division

__author__ = 'Diego'

import os
import nibabel as nib
from scipy import ndimage
import braviz
import numpy as np
import skimage
from skimage import data, filter, color
from skimage.transform import hough_circle
from skimage.feature import peak_local_max
from skimage.draw import circle_perimeter
from skimage.util import img_as_float
import  matplotlib
#matplotlib.use("Qt4Agg")
import matplotlib.pyplot as plt

os.chdir(r"C:\Users\Diego\Documents\prueba_free_surf_400")

skull = nib.load("skull.nii.gz")
data = skull.get_data()
#===============

#data2 = data

data2 = ndimage.median_filter(data,size=3)
#data2 = data2 > 50
slices = np.arange(130,165)

data2 = data2[:,slices,:]

data2 = data2 - np.min(data2)
data2 = data2/np.max(data2)


tot_scores = []

Original slices

Canny filter


In [9]:
for s in xrange(data2.shape[1]):
    print s
    ax = plt.gca()
    ax.clear()
    slice = data2[:,s,:].squeeze()
    image = img_as_float(slice)
    edges = filter.canny(image)
    ax.imshow(edges, cmap=plt.cm.gray)
    plt.show()


0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

In [ ]: