In [2]:
import os
# !pip install seaborn
import seaborn
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# !pip install mpld3
import mpld3
import json

pd.set_option('display.max_columns', 200)
pd.set_option('display.max_rows', 10)
%matplotlib inline
mpld3.enable_notebook()

In [3]:
# df = pd.read_csv('../shared-resources/crimedata.csv')
df = pd.DataFrame.from_csv('../shared-resources/crimedata.csv', index_col=0)
df.tail()


Out[3]:
record_id report_date report_time major_offense_type address neighborhood police_precinct police_district xcoordinate ycoordinate
id
61502 14462443 2014-11-16 19:19:00 Larceny 2001-2099 block of NW KEARNEY ST, PORTLAND, OR... NORTHWEST PORTLAND PREC CE 810 7.640298e+06 686652.67979
61503 14380280 2014-06-16 08:39:00 Disorderly Conduct 1901-2099 block of NE HALSEY ST, PORTLAND, OR ... SULLIVANS GULCH PORTLAND PREC NO 670 7.652081e+06 687944.91175
61504 14399950 2014-07-16 11:02:00 Liquor Laws 0-298 block of NW 22ND PL, PORTLAND, OR 97210 NORTHWEST PORTLAND PREC CE 810 7.638988e+06 684566.18996
61505 14426109 2014-09-01 15:33:00 Larceny WASHINGTON PARK ARLINGTON HGHTS PORTLAND PREC CE 860 7.638009e+06 683215.81507
61506 14424628 2014-09-13 19:55:00 Larceny 14133-14299 block of NE WEIDLER ST, PORTLAND, ... WILKES PORTLAND PREC EA 942 7.685328e+06 687304.98392

Lets set our index to the report_date column

(the 3rd column, or column number 2, in our CSV)


In [4]:
df = pd.DataFrame.from_csv('../shared-resources/crimedata.csv', index_col=2)
df.tail()


Out[4]:
id record_id report_time major_offense_type address neighborhood police_precinct police_district xcoordinate ycoordinate
report_date
2014-11-16 61502 14462443 19:19:00 Larceny 2001-2099 block of NW KEARNEY ST, PORTLAND, OR... NORTHWEST PORTLAND PREC CE 810 7.640298e+06 686652.67979
2014-06-16 61503 14380280 08:39:00 Disorderly Conduct 1901-2099 block of NE HALSEY ST, PORTLAND, OR ... SULLIVANS GULCH PORTLAND PREC NO 670 7.652081e+06 687944.91175
2014-07-16 61504 14399950 11:02:00 Liquor Laws 0-298 block of NW 22ND PL, PORTLAND, OR 97210 NORTHWEST PORTLAND PREC CE 810 7.638988e+06 684566.18996
2014-09-01 61505 14426109 15:33:00 Larceny WASHINGTON PARK ARLINGTON HGHTS PORTLAND PREC CE 860 7.638009e+06 683215.81507
2014-09-13 61506 14424628 19:55:00 Larceny 14133-14299 block of NE WEIDLER ST, PORTLAND, ... WILKES PORTLAND PREC EA 942 7.685328e+06 687304.98392

In [5]:
# Now we can retrieve all the crimes on a particular date just by using the `.loc` getitem method (square brackets)
df.loc['2014-06-16']


Out[5]:
id record_id report_time major_offense_type address neighborhood police_precinct police_district xcoordinate ycoordinate
report_date
2014-06-16 6796 14371447 17:49:00 Motor Vehicle Theft 5801-5899 block of SE 15TH AVE, PORTLAND, OR 9... SELLWD-MORELAND PORTLAND PREC CE 742 7.650525e+06 668745.03084
2014-06-16 7301 14378337 12:39:00 Larceny 2300-2378 block of W BURNSIDE ST, PORTLAND, OR... GOOSE HOLLOW PORTLAND PREC CE 860 7.638783e+06 684594.23720
2014-06-16 7450 14378334 08:31:00 Burglary 2500-2698 block of NE 38TH AVE, PORTLAND, OR 9... GRANT PARK PORTLAND PREC NO 660 7.657960e+06 690333.64501
2014-06-16 7480 14381092 08:00:00 Vandalism 7300-7398 block of NE 27TH AVE, PORTLAND, OR 9... CONCORDIA PORTLAND PREC NO 610 7.654667e+06 702825.81266
2014-06-16 7536 14376997 19:10:00 Disorderly Conduct 8000-8098 block of SE 36TH AVE, PORTLAND, OR 9... EASTMORELAND PORTLAND PREC CE 742 7.656667e+06 663058.51772
... ... ... ... ... ... ... ... ... ... ...
2014-06-16 60547 14371417 00:46:00 Larceny N BRANDON AVE and N WATTS ST, PORTLAND, OR 97217 KENTON PORTLAND PREC NO 550 7.641697e+06 705502.04134
2014-06-16 60815 14371995 17:05:00 Disorderly Conduct SW WASHINGTON ST and SW 3RD AVE, PORTLAND, OR ... DOWNTOWN PORTLAND PREC CE 830 7.644734e+06 683030.70013
2014-06-16 61081 14371440 12:39:00 Runaway Unknown/Not Available MULTNOMAH PORTLAND PREC CE 882 NaN NaN
2014-06-16 61352 14372448 18:29:00 Larceny 2500-2598 block of NE MULTNOMAH ST, PORTLAND, ... SULLIVANS GULCH PORTLAND PREC NO 670 7.653786e+06 687113.71916
2014-06-16 61503 14380280 08:39:00 Disorderly Conduct 1901-2099 block of NE HALSEY ST, PORTLAND, OR ... SULLIVANS GULCH PORTLAND PREC NO 670 7.652081e+06 687944.91175

175 rows × 10 columns


In [6]:
# What are the types and sizes of each of our columns?
df.info()


<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 61497 entries, 2014-01-06 to 2014-09-13
Data columns (total 10 columns):
id                    61497 non-null int64
record_id             61497 non-null int64
report_time           61497 non-null object
major_offense_type    61497 non-null object
address               61497 non-null object
neighborhood          60616 non-null object
police_precinct       61493 non-null object
police_district       61493 non-null object
xcoordinate           53963 non-null float64
ycoordinate           53963 non-null float64
dtypes: float64(2), int64(2), object(6)
memory usage: 6.4+ MB

In [83]:
# that's a lot of data, let's take a sample so our plots don't take too long to display
df = df.sample(8000)
df.describe()


Out[83]:
id record_id xcoordinate ycoordinate
count 8000.000000 8.000000e+03 7.022000e+03 7022.000000
mean 30587.285000 1.438872e+07 7.655768e+06 684916.847490
std 17851.614022 6.420441e+04 1.620216e+04 11517.804955
min 11.000000 1.427185e+07 7.568911e+06 593145.449150
25% 15404.500000 1.433313e+07 7.643756e+06 678434.055853
50% 30206.000000 1.438786e+07 7.650078e+06 684075.931595
75% 46278.250000 1.444564e+07 7.669273e+06 689203.499670
max 61506.000000 1.454248e+07 7.716970e+06 726347.339900

Why didn't Pandas import all those police_district numbers as integers?

(They are listed as <object> above and the first few in .head() all look like integers) So let's try to manually convert them ourselves


In [7]:
df.police_district.astype(int)


---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-7-54d99d0d6b7a> in <module>()
----> 1 df.police_district.astype(int)

~/.virtualenvs/civicu/lib/python3.5/site-packages/pandas/util/_decorators.py in wrapper(*args, **kwargs)
     89                 else:
     90                     kwargs[new_arg_name] = new_arg_value
---> 91             return func(*args, **kwargs)
     92         return wrapper
     93     return _deprecate_kwarg

~/.virtualenvs/civicu/lib/python3.5/site-packages/pandas/core/generic.py in astype(self, dtype, copy, errors, **kwargs)
   3408         # else, only a single dtype is given
   3409         new_data = self._data.astype(dtype=dtype, copy=copy, errors=errors,
-> 3410                                      **kwargs)
   3411         return self._constructor(new_data).__finalize__(self)
   3412 

~/.virtualenvs/civicu/lib/python3.5/site-packages/pandas/core/internals.py in astype(self, dtype, **kwargs)
   3222 
   3223     def astype(self, dtype, **kwargs):
-> 3224         return self.apply('astype', dtype=dtype, **kwargs)
   3225 
   3226     def convert(self, **kwargs):

~/.virtualenvs/civicu/lib/python3.5/site-packages/pandas/core/internals.py in apply(self, f, axes, filter, do_integrity_check, consolidate, **kwargs)
   3089 
   3090             kwargs['mgr'] = self
-> 3091             applied = getattr(b, f)(**kwargs)
   3092             result_blocks = _extend_blocks(applied, result_blocks)
   3093 

~/.virtualenvs/civicu/lib/python3.5/site-packages/pandas/core/internals.py in astype(self, dtype, copy, errors, values, **kwargs)
    469     def astype(self, dtype, copy=False, errors='raise', values=None, **kwargs):
    470         return self._astype(dtype, copy=copy, errors=errors, values=values,
--> 471                             **kwargs)
    472 
    473     def _astype(self, dtype, copy=False, errors='raise', values=None,

~/.virtualenvs/civicu/lib/python3.5/site-packages/pandas/core/internals.py in _astype(self, dtype, copy, errors, values, klass, mgr, raise_on_error, **kwargs)
    519 
    520                 # _astype_nansafe works fine with 1-d only
--> 521                 values = astype_nansafe(values.ravel(), dtype, copy=True)
    522                 values = values.reshape(self.shape)
    523 

~/.virtualenvs/civicu/lib/python3.5/site-packages/pandas/core/dtypes/cast.py in astype_nansafe(arr, dtype, copy)
    623     elif arr.dtype == np.object_ and np.issubdtype(dtype.type, np.integer):
    624         # work around NumPy brokenness, #1987
--> 625         return lib.astype_intsafe(arr.ravel(), dtype).reshape(arr.shape)
    626 
    627     if dtype.name in ("datetime64", "timedelta64"):

pandas/_libs/lib.pyx in pandas._libs.lib.astype_intsafe (pandas/_libs/lib.c:16264)()

pandas/_libs/src/util.pxd in util.set_value_at_unsafe (pandas/_libs/lib.c:72625)()

ValueError: invalid literal for int() with base 10: 'OP'

In [8]:
# Can we mask out everything except crimes in this nonnumbered police district called "OP"
mask = (df.police_district == 'OP')
df[mask].head()


Out[8]:
id record_id report_time major_offense_type address neighborhood police_precinct police_district xcoordinate ycoordinate
report_date
2014-07-11 8715 14395231 12:05:00 Trespass 8200-8698 block of SE CLATSOP ST, PORTLAND, OR... NaN CLACKAMAS PREC OP OP 7.668727e+06 661219.86253
2014-07-11 8716 14395141 12:17:00 Sex Offenses Unknown/Not Available NaN CLACKAMAS PREC OP OP NaN NaN
2014-07-11 9630 14395227 12:05:00 Aggravated Assault 8200-8698 block of SE CLATSOP ST, PORTLAND, OR... NaN CLACKAMAS PREC OP OP 7.668727e+06 661219.86253
2014-01-18 25330 14283731 08:40:00 Fraud 12100-12198 block of SE 82ND AVE, HAPPY VALLEY... NaN CLACKAMAS PREC OP OP 7.668486e+06 651852.74541
2014-01-20 25962 14290611 03:34:00 Drugs SE JOHNSON CREEK BLVD and SE 82ND AVE, MILWAUK... NaN CLACKAMAS PREC OP OP 7.668667e+06 659564.25755

In [9]:
# let's clean up that major_offense_type string to make it consistently spelled and capitalized
df.major_offense_type = df.major_offense_type.str.lower().str.strip()
# now let's count them up
df.major_offense_type.value_counts()


Out[9]:
larceny                    24178
vandalism                   4411
burglary                    4102
disorderly conduct          4008
assault, simple             3935
                           ...  
offenses against family       46
homicide                      27
curfew                        24
kidnap                        20
gambling                       1
Name: major_offense_type, Length: 27, dtype: int64

In [18]:
print('|'.join(sorted(df.major_offense_type.value_counts().index)))


aggravated assault|arson|assault, simple|burglary|curfew|disorderly conduct|drugs|duii|embezzlement|forgery|fraud|gambling|homicide|kidnap|larceny|liquor laws|motor vehicle theft|offenses against family|prostitution|rape|robbery|runaway|sex offenses|stolen property|trespass|vandalism|weapons

In [20]:
# extract only rows for tresspass crimes
mask = df.major_offense_type == 'trespass'
trespasses = df[mask]
df[mask].describe()


Out[20]:
id record_id xcoordinate ycoordinate
count 2805.000000 2.805000e+03 2.336000e+03 2336.000000
mean 31501.791800 1.438067e+07 7.654999e+06 685287.317006
std 18132.340337 6.305688e+04 1.587560e+04 10823.867973
min 14.000000 1.427185e+07 7.568600e+06 623903.334320
25% 15352.000000 1.432719e+07 7.643977e+06 681356.365975
50% 32751.000000 1.437741e+07 7.648121e+06 684309.884840
75% 45359.000000 1.443537e+07 7.669134e+06 687827.310282
max 61445.000000 1.454167e+07 7.710211e+06 725838.940620

Looks like gambling is not a popular crime
(or at least not a popular police reported crime)


In [19]:
# Now let's count up crimes by police district
# Notice any non-integer values?
district_counts = trespasses.police_district.value_counts()
district_counts


Out[19]:
822    208
830    171
690    151
842    116
941    106
      ... 
130      1
T24      1
HP3      1
352      1
141      1
Name: police_district, Length: 71, dtype: int64

In [21]:
district_counts


Out[21]:
822    208
830    171
690    151
842    116
941    106
      ... 
130      1
T24      1
HP3      1
352      1
141      1
Name: police_district, Length: 71, dtype: int64

In [22]:
# let's create a dictionary of all the crime counts in all the districts
dict(zip(district_counts.index, district_counts))


Out[22]:
{'130': 1,
 '141': 1,
 '151': 2,
 '161': 1,
 '162': 11,
 '352': 1,
 '510': 32,
 '520': 30,
 '530': 62,
 '540': 67,
 '550': 25,
 '560': 32,
 '570': 32,
 '580': 22,
 '590': 58,
 '610': 25,
 '620': 19,
 '630': 32,
 '641': 30,
 '642': 33,
 '651': 93,
 '652': 25,
 '660': 17,
 '670': 18,
 '680': 40,
 '690': 151,
 '711': 64,
 '712': 25,
 '720': 19,
 '730': 34,
 '741': 31,
 '742': 21,
 '800': 14,
 '810': 70,
 '821': 40,
 '822': 208,
 '830': 171,
 '841': 20,
 '842': 116,
 '850': 96,
 '860': 10,
 '871': 45,
 '872': 6,
 '881': 15,
 '882': 16,
 '890': 12,
 '901': 56,
 '902': 42,
 '911': 34,
 '912': 21,
 '921': 33,
 '922': 27,
 '923': 37,
 '931': 45,
 '932': 27,
 '941': 106,
 '942': 34,
 '951': 49,
 '952': 66,
 '961': 63,
 '962': 48,
 '971': 58,
 '972': 61,
 '981': 29,
 '982': 25,
 '990': 44,
 'HP3': 1,
 'OP': 2,
 'PA': 1,
 'T24': 1,
 'WL2': 1}

In [23]:
# Let's talk about dict and zip to make sure you understand the code above
dict([('a', 0), ('b', 1), ('c', 2), ('d', 3), ('e', 4)])


Out[23]:
{'a': 0, 'b': 1, 'c': 2, 'd': 3, 'e': 4}

In [24]:
# dict will accept any sequences of pairings (2-tuples)
# but what if we have two sequences of values that we want to "pair up"
# zip brings the two sides of a pair (the sides of a zipper) together in an alligned pairing
list(zip(['a', 'b', 'c', 'd', 'e'], [0, 1, 2, 3, 4]))


Out[24]:
[('a', 0), ('b', 1), ('c', 2), ('d', 3), ('e', 4)]

In [25]:
# and a dict is can take a list of pairs, like before... so
dict(zip(['a', 'b', 'c', 'd', 'e'], [0, 1, 2, 3, 4]))


Out[25]:
{'a': 0, 'b': 1, 'c': 2, 'd': 3, 'e': 4}

In [26]:
# and `range(5)` is a sequence (iterable)
dict(zip(['a', 'b', 'c', 'd', 'e'], range(5)))


Out[26]:
{'a': 0, 'b': 1, 'c': 2, 'd': 3, 'e': 4}

In [27]:
# if we get the length wrong, the zipper will get "stuck" on the shortest sequence
dict(zip(['a', 'b', 'c', 'd', 'e'], range(4)))


Out[27]:
{'a': 0, 'b': 1, 'c': 2, 'd': 3}

In [28]:
# or because any sequence will do, and a str is a sequence of characters:
dict(zip('abcde', range(5)))


Out[28]:
{'a': 0, 'b': 1, 'c': 2, 'd': 3, 'e': 4}

In [29]:
# What will happen if you try to coerce a list of 3-tuples into a dict?
dict([('a', 1, 2), ('b', 3, 4)])


---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-29-f7adccc027f6> in <module>()
      1 # What will happen if you try to coerce a list of 3-tuples into a dict?
----> 2 dict([('a', 1, 2), ('b', 3, 4)])

ValueError: dictionary update sequence element #0 has length 3; 2 is required

In [30]:
x = list(range(3))
y = list(range(4))
print(x)
print(y)
list(zip(x, y, range(5)))


[0, 1, 2]
[0, 1, 2, 3]
Out[30]:
[(0, 0, 0), (1, 1, 1), (2, 2, 2)]

In [31]:
x = [(0, 0, 0), (1, 1, 1), (2, 2, 2)]
list(zip(*x))


Out[31]:
[(0, 1, 2), (0, 1, 2), (0, 1, 2)]

In [32]:
list(zip(x[0], x[1], x[2]))


Out[32]:
[(0, 1, 2), (0, 1, 2), (0, 1, 2)]

In [34]:
df['report_date'] = pd.to_datetime(df.index)
df.report_date


Out[34]:
report_date
2014-01-06   2014-01-06
2014-01-05   2014-01-05
2014-01-23   2014-01-23
2014-01-14   2014-01-14
2014-01-19   2014-01-19
                ...    
2014-11-16   2014-11-16
2014-06-16   2014-06-16
2014-07-16   2014-07-16
2014-09-01   2014-09-01
2014-09-13   2014-09-13
Name: report_date, Length: 61497, dtype: datetime64[ns]

In [35]:
def fun(x):
    return str(x)

df.report_date.apply(fun)
# df.


Out[35]:
report_date
2014-01-06    2014-01-06 00:00:00
2014-01-05    2014-01-05 00:00:00
2014-01-23    2014-01-23 00:00:00
2014-01-14    2014-01-14 00:00:00
2014-01-19    2014-01-19 00:00:00
                     ...         
2014-11-16    2014-11-16 00:00:00
2014-06-16    2014-06-16 00:00:00
2014-07-16    2014-07-16 00:00:00
2014-09-01    2014-09-01 00:00:00
2014-09-13    2014-09-13 00:00:00
Name: report_date, Length: 61497, dtype: object

In [38]:
# df.plot.scatter(x='xcoordinate', y='ycoordinate', c='r')
df.plot(kind='scatter', x='xcoordinate', y='ycoordinate', c='r')
from matplotlib import pyplot as plt
plt.show()



In [39]:
df.std()


Out[39]:
id             17752.799089
record_id      63997.072010
xcoordinate    16113.946724
ycoordinate    11582.723344
dtype: float64

In [40]:
trespasses.plot(kind='scatter', x='xcoordinate', y='ycoordinate')
plt.show()



In [41]:
colornums = mask.astype(int)
# print(type(colornums))
# colornums?
# print(colornums.__dict__)
# print(colornums)

In [42]:
# colornums.index = pd.Series(colornums.index).apply(chr)
colornums


Out[42]:
report_date
2014-01-06    0
2014-01-05    0
2014-01-23    0
2014-01-14    0
2014-01-19    1
             ..
2014-11-16    0
2014-06-16    0
2014-07-16    0
2014-09-01    0
2014-09-13    0
Name: major_offense_type, Length: 61497, dtype: int64

In [43]:
colors = np.array(['b', 'r'])[colornums]
colors


Out[43]:
array(['b', 'b', 'b', ..., 'b', 'b', 'b'],
      dtype='<U1')

In [50]:
df.plot(kind='scatter', x='xcoordinate', y='ycoordinate', c=colors)
# plt.show()



In [54]:
df.sample(100).plot.scatter(x='xcoordinate', y='ycoordinate')
# plt.show()


Out[54]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f7592b28898>

In [55]:
df.xcoordinate.hist(bins=20)
# plt.show()


Out[55]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f7593249470>

In [56]:
df.ycoordinate.hist(bins=20)
# plt.show()



In [92]:
df.plot?

In [60]:
df.plot.density(x='xcoordinate', y='ycoordinate')


Out[60]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f758f8b88d0>

In [99]:
df.sample(1000).plot.scatter(x='xcoordinate', y='ycoordinate')
mpld3.enable_notebook()
plt.show()



In [94]:
plt.show()



In [68]:
# extract only rows for a few crimes
crimenames = 'trespass burglary curfew vandalism'.split()
mask = np.array([False] * len(df))
for crime in crimenames:
    mask = mask | np.array([crime == mo for mo in df.major_offense_type])
    # mask = mask | (df.major_offense_type == crime)
somecrimes = df[mask].copy()
somecrimes.describe()


Out[68]:
id record_id xcoordinate ycoordinate
count 11342.000000 1.134200e+04 1.045100e+04 10451.000000
mean 29760.362899 1.438773e+07 7.657039e+06 684410.159733
std 17539.003560 6.463765e+04 1.661731e+04 12233.915296
min 12.000000 1.427185e+07 7.568600e+06 590499.173230
25% 14234.500000 1.433159e+07 7.644356e+06 676432.092850
50% 30232.000000 1.438635e+07 7.653881e+06 683803.103020
75% 43937.500000 1.444473e+07 7.670028e+06 691120.468665
max 61494.000000 1.454248e+07 7.710211e+06 725838.940620

In [69]:
# can you do this with a collections.Counter class?
crimecounts = somecrimes.major_offense_type.value_counts()
print(crimecounts)


vandalism    4411
burglary     4102
trespass     2805
curfew         24
Name: major_offense_type, dtype: int64

In [85]:
d = dict(zip(crimenames, 'rgbcmkrgbcmkrgbcmkrgbcmk'))
print(d)
somecrimes['color'] = somecrimes.major_offense_type.replace(d)
somecrimes.describe()


{'vandalism': 'c', 'burglary': 'g', 'curfew': 'b', 'trespass': 'r'}
Out[85]:
id record_id xcoordinate ycoordinate
count 11342.000000 1.134200e+04 1.045100e+04 10451.000000
mean 29760.362899 1.438773e+07 7.657039e+06 684410.159733
std 17539.003560 6.463765e+04 1.661731e+04 12233.915296
min 12.000000 1.427185e+07 7.568600e+06 590499.173230
25% 14234.500000 1.433159e+07 7.644356e+06 676432.092850
50% 30232.000000 1.438635e+07 7.653881e+06 683803.103020
75% 43937.500000 1.444473e+07 7.670028e+06 691120.468665
max 61494.000000 1.454248e+07 7.710211e+06 725838.940620

In [82]:
somecrimes.plot(kind='scatter', x='xcoordinate', y='ycoordinate', c=somecrimes.color, figsize=(11, 9), alpha=.3, marker='o')


Out[82]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f758f7ada90>

In [81]:
# create a scatter matrix from the dataframe, color by y_train
scat = pd.plotting.scatter_matrix(dflatlon, c=somecrimes.color, figsize=(11, 9), marker='o',
                                 hist_kwds={'bins': 20}, s=60, alpha=.3)



In [86]:
dflatlon.xcoordinate.hist()


Out[86]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f758e2e12e8>

In [87]:
dflatlon.xcoordinate.hist(bins=40)


Out[87]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f758f51dc88>

In [89]:
dflatlon.xcoordinate.hist(**{'bins': 20})


Out[89]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f758f55c860>

In [98]:
def fun(*anything, ** kwargs):
    kwargs['y'] = anything[0]
    print(kwargs)
    
fun(2, x=1)


{'y': 2, 'x': 1}

In [103]:
from itertools import product
print(list(product('abcd', 'efgh', range(4))))


[('a', 'e', 0), ('a', 'e', 1), ('a', 'e', 2), ('a', 'e', 3), ('a', 'f', 0), ('a', 'f', 1), ('a', 'f', 2), ('a', 'f', 3), ('a', 'g', 0), ('a', 'g', 1), ('a', 'g', 2), ('a', 'g', 3), ('a', 'h', 0), ('a', 'h', 1), ('a', 'h', 2), ('a', 'h', 3), ('b', 'e', 0), ('b', 'e', 1), ('b', 'e', 2), ('b', 'e', 3), ('b', 'f', 0), ('b', 'f', 1), ('b', 'f', 2), ('b', 'f', 3), ('b', 'g', 0), ('b', 'g', 1), ('b', 'g', 2), ('b', 'g', 3), ('b', 'h', 0), ('b', 'h', 1), ('b', 'h', 2), ('b', 'h', 3), ('c', 'e', 0), ('c', 'e', 1), ('c', 'e', 2), ('c', 'e', 3), ('c', 'f', 0), ('c', 'f', 1), ('c', 'f', 2), ('c', 'f', 3), ('c', 'g', 0), ('c', 'g', 1), ('c', 'g', 2), ('c', 'g', 3), ('c', 'h', 0), ('c', 'h', 1), ('c', 'h', 2), ('c', 'h', 3), ('d', 'e', 0), ('d', 'e', 1), ('d', 'e', 2), ('d', 'e', 3), ('d', 'f', 0), ('d', 'f', 1), ('d', 'f', 2), ('d', 'f', 3), ('d', 'g', 0), ('d', 'g', 1), ('d', 'g', 2), ('d', 'g', 3), ('d', 'h', 0), ('d', 'h', 1), ('d', 'h', 2), ('d', 'h', 3)]

In [102]:
l = []
for x in 'abcd':
    for y in 'efgh':
        l += [(x, y)]
print(l)


[('a', 'e'), ('a', 'f'), ('a', 'g'), ('a', 'h'), ('b', 'e'), ('b', 'f'), ('b', 'g'), ('b', 'h'), ('c', 'e'), ('c', 'f'), ('c', 'g'), ('c', 'h'), ('d', 'e'), ('d', 'f'), ('d', 'g'), ('d', 'h')]