DR7.1 GMMs

The goal of this notebook is to generate Gaussian mixture models (GMMs) from DR7 photometry for ELG, LRG, BGS, and QSO targets, and to incorporate morphologies and morphological types for ELG, LRG, and BGS targets.

There are also some diagnostic plots of the morphological fraction of each type of object as a function of apparent magnitude.

John Moustakas
Siena College
2018 September


In [1]:
import os
import warnings
import numpy as np
from pkg_resources import resource_filename

In [2]:
import fitsio
from astropy.table import Table, Column
from sklearn.mixture import GaussianMixture as GMM
from sklearn.model_selection import train_test_split

In [3]:
from desiutil.sklearn import GaussianMixtureModel
from desitarget.targetmask import desi_mask

In [4]:
import matplotlib.pyplot as plt
import corner as cn

In [5]:
import seaborn as sns
rc = {'font.family': 'serif'}#, 'text.usetex': True}

In [6]:
%matplotlib inline

Simulation variables


In [7]:
dr = 'dr7.1'
seed = 123
rand = np.random.RandomState(seed)
overwrite = False

Read the reference target catalog.


In [8]:
def read_targets(dr='dr7.1', nsample=None):
    if dr == 'dr7.1':
        ver = '0.23.0'
    targetsfile = os.path.join(os.getenv('DESI_ROOT'), 'target', 'catalogs', '{}'.format(dr), 
                          ver, 'targets-{}-{}.fits'.format(dr, ver))    
    info = fitsio.FITS(targetsfile)
    if nsample is not None:
        nrows = info[1].get_nrows()
        these = rand.choice(nrows, size=nsample, replace=False)
        targets = Table(fitsio.read(targetsfile, rows=these))
    else:
        targets = Table(fitsio.read(targetsfile))
        nrows = len(targets)
    print('Read {} / {} objects from {}'.format(nsample, nrows, targetsfile))
    
    return targets

In [9]:
%time targets = read_targets(dr=dr, nsample=2500000)
#%time targets = read_targets(dr=dr)


Read 2500000 / 72660205 objects from /global/project/projectdirs/desi/target/catalogs/dr7.1/0.23.0/targets-dr7.1-0.23.0.fits
CPU times: user 10.4 s, sys: 6.4 s, total: 16.8 s
Wall time: 17 s

Some basic QA.


In [10]:
def qa_bic(ncomp, bic, title='Object', png=None):
    ncompbest = ncomp[np.argmin(bic)]
    fig, ax = plt.subplots(figsize=(8, 5))
    ax.plot(ncomp, bic / 100, marker='s', ls='-')
    ax.set_xlabel('Number of Gaussian Components')
    ax.set_ylabel('Bayesian Information Criterion / 100')
    ax.set_title('{}: NGauss = {:d}'.format(title, ncompbest))
    if png:
        plt.savefig(png)

In [11]:
def qa_corner(Xdata, Xsample, labels, target='ELG', morph='DEV'):
    fig = cn.corner(Xdata, labels=labels, label_kwargs={'fontsize': 14}, 
                    show_titles=True, title_kwargs={'fontsize': 12},
                    color='k', quiet=True, hist2d_kwargs={'quiet': True},)
    fig.suptitle('{}/{}s Training Sample={} (grayscale), GMM Samples={} (green points)'.format(
        target, morph.strip(), Xdata.shape[0], Xsample.shape[0]))
    
    nobj, ndim = Xdata.shape
    axes = np.array(fig.axes).reshape((ndim, ndim))
    for yi in range(ndim):
        for xi in range(yi):
            ax = axes[yi, xi]
            ax.scatter(Xsample[:, xi], Xsample[:, yi], marker='s', 
                       color='g', s=5, alpha=0.5)
    if ndim > 3:
        fig.subplots_adjust(top=0.88)

Wrapper functions for the Gaussian mixture modeling.


In [12]:
def get_data(target='ELG', morph='EXP ', Nmax=None, maghist=False):
    """Build the data matrix."""
    from desitarget.targetmask import desi_mask, mws_mask, bgs_mask
    
    if 'BGS' in target:
        indx_targ = (targets['DESI_TARGET'] & desi_mask.BGS_ANY) != 0
    else:
        indx_targ = (targets['DESI_TARGET'] & desi_mask.mask(target.strip())) != 0
    indx_targ *= ( (targets['BRIGHTSTARINBLOB'] == False) *
                   (targets['NOBS_G'] > 2) *
                   (targets['NOBS_R'] > 2) *
                   (targets['NOBS_Z'] > 2) *
                   (targets['FLUX_G'] * np.sqrt(targets['FLUX_IVAR_G']) > 1) * 
                   (targets['FLUX_R'] * np.sqrt(targets['FLUX_IVAR_R']) > 1) * 
                   (targets['FLUX_Z'] * np.sqrt(targets['FLUX_IVAR_Z']) > 1) )

    with np.errstate(all='ignore'):
        # Soft cuts on grz S/N and shape measurements.
        indx_flux = (targets['TYPE'] == morph)
                     
        indx_rex = ( ( (targets['SHAPEEXP_R'] * np.sqrt(targets['SHAPEEXP_R_IVAR'])) > 1 ) * 
                       (targets['SHAPEEXP_R'] < 10) )
        indx_exp = ( ( (targets['SHAPEEXP_R'] * np.sqrt(targets['SHAPEEXP_R_IVAR'])) > 1 ) *
                     ( (targets['SHAPEEXP_E1'] * np.sqrt(targets['SHAPEEXP_E1_IVAR'])) > 1 ) *
                     ( (targets['SHAPEEXP_E2'] * np.sqrt(targets['SHAPEEXP_E2_IVAR'])) > 1 ) *
                       (targets['SHAPEEXP_R'] < 10) )
        indx_dev = ( ( (targets['SHAPEDEV_R'] * np.sqrt(targets['SHAPEDEV_R_IVAR'])) > 1 ) *
                     ( (targets['SHAPEDEV_E1'] * np.sqrt(targets['SHAPEDEV_E1_IVAR'])) > 1 ) *
                     ( (targets['SHAPEDEV_E2'] * np.sqrt(targets['SHAPEDEV_E2_IVAR'])) > 1 ) *
                       (targets['SHAPEEXP_R'] < 10) )

        # When studying the morphological fractions, don't apply any S/N cuts on 
        # shapes and sizes.
        if maghist:
            indx = indx_targ
        
        if morph.strip() == 'PSF':
            indx = indx_targ * indx_flux
        elif morph.strip() == 'REX':
            indx = indx_targ * indx_flux * indx_rex
        elif morph.strip() == 'EXP':
            indx = indx_targ * indx_flux * indx_exp
        elif morph.strip() == 'DEV':
            indx = indx_targ * indx_flux * indx_dev
        elif morph.strip() == 'COMP':
            indx = (indx_targ * indx_flux * indx_exp * indx_dev * 
                    ( (targets['FRACDEV'] * np.sqrt(targets['FRACDEV_IVAR'])) > 2 ) )
            
        nobj = np.count_nonzero(indx)
        #print('Selected {} {}s with morph={}'.format(nobj, target, morph))
        if nobj == 0:
            if maghist:
                return []
            else:
                return np.array([]), [], []
    
        gmag = 22.5 - 2.5 * np.log10(targets['FLUX_G'][indx] / targets['MW_TRANSMISSION_G'][indx])
        rmag = 22.5 - 2.5 * np.log10(targets['FLUX_R'][indx] / targets['MW_TRANSMISSION_R'][indx])
        zmag = 22.5 - 2.5 * np.log10(targets['FLUX_Z'][indx] / targets['MW_TRANSMISSION_Z'][indx])
        W1mag = 22.5 - 2.5 * np.log10(targets['FLUX_W1'][indx] / targets['MW_TRANSMISSION_W1'][indx])
        W2mag = 22.5 - 2.5 * np.log10(targets['FLUX_W2'][indx] / targets['MW_TRANSMISSION_W2'][indx])
        gr = gmag - rmag
        rz = rmag - zmag
        zW1 = zmag - W1mag
        W1W2 = W1mag - W2mag

        if maghist:
            if target == 'LRG':
                return zmag
            else:
                return rmag
        
        if morph.strip() == 'REX':
            rex_reff = np.log10(targets['SHAPEEXP_R'][indx])
            rex_reff_snr = np.log10(targets['SHAPEEXP_R'][indx] * np.sqrt(targets['SHAPEEXP_R_IVAR'][indx]))
            
        if morph.strip() == 'EXP' or morph.strip() == 'COMP':
            exp_reff = np.log10(targets['SHAPEEXP_R'][indx])
            exp_e1 = targets['SHAPEEXP_E1'][indx]
            exp_e2 = targets['SHAPEEXP_E2'][indx]
            exp_reff_snr = np.log10(targets['SHAPEEXP_R'][indx] * np.sqrt(targets['SHAPEEXP_R_IVAR'][indx]))
            exp_e1_snr = np.log10(targets['SHAPEEXP_E1_IVAR'][indx] * np.sqrt(targets['SHAPEEXP_E1_IVAR'][indx]))
            exp_e2_snr = np.log10(targets['SHAPEEXP_E2'][indx] * np.sqrt(targets['SHAPEEXP_E2_IVAR'][indx]))
        
        if morph.strip() == 'DEV' or morph.strip() == 'COMP':
            dev_reff = np.log10(targets['SHAPEDEV_R'][indx])
            dev_e1 = targets['SHAPEDEV_E1'][indx]
            dev_e2 = targets['SHAPEDEV_E2'][indx]
            dev_reff_snr = np.log10(targets['SHAPEDEV_R'][indx] * np.sqrt(targets['SHAPEDEV_R_IVAR'][indx]))
            dev_e1_snr = np.log10(targets['SHAPEDEV_E1_IVAR'][indx] * np.sqrt(targets['SHAPEDEV_E1_IVAR'][indx]))
            dev_e2_snr = np.log10(targets['SHAPEDEV_E2'][indx] * np.sqrt(targets['SHAPEDEV_E2_IVAR'][indx]))
        
        if morph.strip() == 'COMP':
            fracdev = targets['FRACDEV'][indx]
            fracdev_snr = np.log10(targets['FRACDEV'][indx] * np.sqrt(targets['FRACDEV_IVAR'][indx]))
                
    if target == 'LRG':
        X = np.vstack( (zmag, gr, rz, zW1) )
        magandcolors = ('z', 'g - r', 'r - z', 'z - W1',)
        typecolumns = ('z', 'gr', 'rz', 'zW1',)
    elif target == 'QSO':
        X = np.vstack( (rmag, gr, rz, zW1, W1W2) )
        magandcolors = ('r', 'g - r', 'r - z', 'z - W1', 'W1 - W2',)
        typecolumns = ('r', 'gr', 'rz', 'zW1', 'W1W2',)
    else:
        X = np.vstack( (rmag, gr, rz) )
        magandcolors = ('r', 'g - r', 'r - z',)
        typecolumns = ('r', 'gr', 'rz',)
    
    if morph.strip() == 'PSF':
        labels = magandcolors
        columns = typecolumns
        
    if morph.strip() == 'REX':
        X = np.vstack( (X, 
                        rex_reff, rex_reff_snr) )
        labels = magandcolors + (
                  r'$\log_{10}(r_{eff,rex}$ (arcsec)', r'$\log_{10}(S/N\ r_{eff,rex})$',)
        columns = typecolumns + ('reff_rex', 'snr_reff_rex',)
        
    if morph.strip() == 'EXP':
        X = np.vstack( (X, 
                        exp_reff, exp_e1, exp_e2, 
                        exp_reff_snr, exp_e1_snr, exp_e2_snr) )
        labels = magandcolors + (
                  r'$\log_{10}(r_{eff,exp}$ (arcsec)', r'$e_{1,exp}$', r'$e_{2,exp}$', 
                  r'$\log_{10}(S/N\ r_{eff,exp})$', r'$\log_{10}(S/N\ e_{1,exp})$', r'$\log_{10}(S/N\ e_{2,exp})$',)
        columns = typecolumns + (
                   'reff_exp', 'e1_exp', 'e2_exp', 
                   'snr_reff_exp', 'snr_e1_exp', 'snr_e2_exp',)

    if morph.strip() == 'DEV':
        X = np.vstack( (X, 
                        dev_reff, dev_e1, dev_e2, 
                        dev_reff_snr, dev_e1_snr, dev_e2_snr) )
        labels = magandcolors + (
                  r'$\log_{10}(r_{eff,dev}$ (arcsec)', r'$e_{1,dev}$', r'$e_{2,dev}$', 
                  r'$\log_{10}(S/N\ r_{eff,dev})$', r'$\log_{10}(S/N\ e_{1,dev})$', r'$\log_{10}(S/N\ e_{2,dev})$',)
        columns = typecolumns + (
                   'reff_dev', 'e1_dev', 'e2_dev', 
                   'snr_reff_dev', 'snr_e1_dev', 'snr_e2_dev',)

    if morph.strip() == 'COMP':
        X = np.vstack( (X, 
                        exp_reff, exp_e1, exp_e2, 
                        dev_reff, dev_e1, dev_e2, fracdev,
                        exp_reff_snr, exp_e1_snr, exp_e2_snr, 
                        dev_reff_snr, dev_e1_snr, dev_e2_snr, fracdev_snr
                       ) )
        labels = magandcolors + (
                  r'$\log_{10}(r_{eff,exp}$ (arcsec)', r'$e_{1,exp}$', r'$e_{2,exp}$', 
                  r'$\log_{10}(r_{eff,dev}$ (arcsec)', r'$e_{1,dev}$', r'$e_{2,dev}$', r'$Fracdev$',
                  r'$\log_{10}(S/N\ r_{eff,exp})$', r'$\log_{10}(S/N\ e_{1,exp})$', r'$\log_{10}(S/N\ e_{2,exp})$',
                  r'$\log_{10}(S/N\ r_{eff,dev})$', r'$\log_{10}(S/N\ e_{1,dev})$', r'$\log_{10}(S/N\ e_{2,dev})$',
                  r'$\log_{10}(S/N\ Fracdev)$',)
        columns = typecolumns + (
                   'reff_exp', 'e1_exp', 'e2_exp', 
                   'reff_dev', 'e1_dev', 'e2_dev', 'fracdev',
                   'snr_reff_exp', 'snr_e1_exp', 'snr_e2_exp',
                   'snr_reff_dev', 'snr_e1_dev', 'snr_e2_dev', 'snr_fracdev',)

    #import pdb ; pdb.set_trace()
        
    if Nmax is not None and Nmax <= nobj:
        these = rand.choice(nobj, size=Nmax, replace=False)
        X = X[:, these]
            
    return X.T, labels, columns

In [13]:
def get_mog_bic(X, ncomp, rand=None):
    """Compute the MoG and BIC for a range of Gaussian components."""
    mog = [GMM(n_components=nc, random_state=rand).fit(X) for nc in ncomp]
    bic = [_mog.bic(X) for _mog in mog]
    return mog, np.array(bic)

In [14]:
def build_gmm(X, ncompmin=1, ncompmax=5, target='', morph='',
              columns=None, rand=None, png=None, overwrite=False):
    """Find the optimal GMM."""
    from astropy.io import fits

    if rand is None:
        rand = np.random.RandomState()
    ncomp = np.arange(ncompmin, ncompmax+1)

    gmmfile = resource_filename( 'desitarget', 'mock/data/{}/gmm_{}_{}.fits'.format(
        dr, target.lower(), morph.strip().lower()) )
    os.makedirs(os.path.dirname(gmmfile), exist_ok=True)
    
    if ~os.path.isfile(gmmfile) or overwrite:
        #print('Generating a GMM for {}/{} with N={}-{} components from {} objects.'.format(
        #    target, morph.strip(), ncompmin, ncompmax, X.shape[0]))
        allmog, bic = get_mog_bic(X, ncomp, rand=rand)
        qa_bic(ncomp, bic, png=png, title='{}/{}s (N={})'.format(
            target, morph.strip(), X.shape[0]))
    
        print('Writing {}'.format(gmmfile))
        mog = allmog[np.argmin(bic)] # minimize the BIC
        GaussianMixtureModel.save(mog, gmmfile)
                    
        # Update the FITS header with the column names.
        if columns is not None: 
            with fits.open(gmmfile, 'update') as ff:
                ff[0].header['NCOL'] = len(columns)
                for ii, col in enumerate(columns):
                    ff[0].header['COL{:02d}'.format(ii)] = col.lower()
    
    # (Re)read the model to get a few more convenience methods.
    #print('Reading {}'.format(gmmfile))
    mog = GaussianMixtureModel.load(gmmfile)

    return mog

Get the fraction of morphological type for each target type as a function of magnitude.


In [15]:
def maghist_bins(deltam=0.5, minmag=19, maxmag=24, target='ELG', binedges=False):
    """Magnitude bins."""
    if target.strip() == 'LRG':
        minmag, maxmag = 18.0, 21.0
    elif target.strip() == 'BGS':
        minmag, maxmag = 15.0, 20.0
    else:
        minmag, maxmag = 19.0, 24.0
        
    if binedges:
        bins = np.arange(minmag, maxmag, deltam) # bin left edges
    else:
        bins = np.arange(minmag, maxmag, deltam) + deltam / 2 # bin centers
        
    return bins

In [16]:
def maghist_type(data, target='ELG'):
    """Fraction of a given morphological types as a function of magnitude."""
    bins = maghist_bins(target=target, binedges=True)
    hist, _ = np.histogram( data, bins=len(bins), range=(bins.min(), bins.max()) )
    return hist

In [17]:
def qa_maghist(data, target='ELG'):
    """Simple QA plot."""
    fig, ax = plt.subplots(figsize=(8, 6))
    magbins = data['MAG']
    ls = iter(['-', '--', '-.', ':', '-'])
    marker = iter(['s', 'o', '^', 'D', 'p'])
    
    for morph in ('PSF', 'REX', 'EXP', 'DEV', 'COMP'):
        if morph in data.colnames:
            good = data[morph] > 0
            ax.plot(magbins[good], data[morph][good], '{}{}'.format(next(ls), next(marker)),
                    label=morph, lw=2, markersize=10)#, ls=next(ls)
    ax.set_ylim(0, 1)
    ax.set_ylabel('Morphological Type Fraction')

    if target == 'LRG':
        ax.set_xlabel('$z$ (AB mag)')
    else:
        ax.set_xlabel('$r$ (AB mag)')
    ax.text(0.1, 0.95, target, ha='left', va='top', 
            transform=ax.transAxes, fontsize=18)
    ax.legend(loc='upper right')

In [18]:
def maghist_normalize(maghist, target='ELG'):
    """Normalize the type fractions and write out."""
    morph = [mm.strip() for mm in maghist.keys()]
    typefrac = [maghist[mm] for mm in maghist.keys()]

    frac = np.vstack(typefrac).astype('f4')
    tot = np.sum(frac, axis=0)
    normfrac = np.zeros_like(frac)
    notzero = np.where( tot > 0 )[0]
    for ii in range(frac.shape[0]):
        normfrac[ii, notzero] = frac[ii, notzero] / tot[notzero]
    
    out = Table()
    #out.add_column(Column(name='MORPH', data=morph))
    out.add_column(Column(name='MAG', data=maghist_bins(target=target), dtype='f4'))
    for ii, mm in enumerate(morph):
        out.add_column(Column(name=mm, data=normfrac[ii, :], dtype='f4'))
                         
    return out

In [19]:
def get_maghist(target, Nmax=50000, overwrite=False):
    """Get the magnitude histogram of each morphological type."""
    maghist = dict()
    for morph in ('PSF ', 'REX ', 'EXP ', 'DEV ', 'COMP'):
        X = get_data(target=target, morph=morph, Nmax=Nmax, maghist=True)
        if len(X) == 0:
            continue
        maghist[morph.strip()] = maghist_type(X, target=target)

    out = maghist_normalize(maghist, target=target)

    # Write out
    fracfile = resource_filename( 'desitarget', 'mock/data/{}/fractype_{}.fits'.format(
        dr, target.lower()))
    os.makedirs(os.path.dirname(fracfile), exist_ok=True)
    if ~os.path.isfile(fracfile) or overwrite:
        print('Writing {}'.format(fracfile))
        out.write(fracfile, overwrite=True)

    qa_maghist(out, target=target)
        
    return out

In [20]:
sns.set(style='ticks', font_scale=1.5, palette='Set2', rc=rc)

In [21]:
for target in ('QSO', 'BGS', 'ELG', 'LRG'):
    out = get_maghist(target, overwrite=overwrite)


Writing /global/cscratch1/sd/ioannis/repos/desihub/desitarget/py/desitarget/mock/data/dr7.1/fractype_qso.fits
Writing /global/cscratch1/sd/ioannis/repos/desihub/desitarget/py/desitarget/mock/data/dr7.1/fractype_bgs.fits
Writing /global/cscratch1/sd/ioannis/repos/desihub/desitarget/py/desitarget/mock/data/dr7.1/fractype_elg.fits
Writing /global/cscratch1/sd/ioannis/repos/desihub/desitarget/py/desitarget/mock/data/dr7.1/fractype_lrg.fits

Now train and validate the GMMs for each combination of target and morphological type.


In [22]:
def train_and_validate(target, morph=None, Nmax=50000, Nsample=500, ncompmin=1, 
                       ncompmax=20, train_size=0.8, overwrite=False):
    
    test_size = 1-train_size
    if morph is None:
        morph = ('PSF ', 'REX ', 'EXP ', 'DEV ', 'COMP')
    
    for mm in np.atleast_1d(morph):
        X, labels, columns = get_data(target=target, morph=mm, Nmax=Nmax) # Nmax=20000)
        
        if X.shape[0] > 3*ncompmax:
            print('Training:testing {}:{} {}/{}s with {}-{} Gaussian components.'.format(
                np.round(X.shape[0]*train_size).astype('int'), np.round(X.shape[0]*test_size).astype('int'),
                target, mm.strip(), ncompmin, ncompmax))
        else:
            if X.shape[0] == 0:
                print('No  {}/{}s selected.'.format(target, mm))
            else:
                print('Only {} {}/{}s selected.'.format(X.shape[0], target, mm))
            continue

        Xtrain, Xvalidate = train_test_split(X, train_size=train_size, 
                                             test_size=1-train_size,
                                             random_state=rand)
    
        mog = build_gmm(Xtrain, ncompmin=ncompmin, ncompmax=ncompmax, 
                        overwrite=overwrite, target=target, morph=mm, 
                        rand=rand, columns=columns, png=None)
    
        Xsample = mog.sample(Nsample, random_state=rand)
        qa_corner(Xvalidate, Xsample, labels, target=target, morph=mm)
        
        print()

In [23]:
sns.reset_orig()
ncompmax = 15

QSO


In [24]:
%time train_and_validate('QSO', Nsample=500, Nmax=None, ncompmax=ncompmax, overwrite=overwrite)


Training:testing 32458:8115 QSO/PSFs with 1-15 Gaussian components.
Writing /global/cscratch1/sd/ioannis/repos/desihub/desitarget/py/desitarget/mock/data/dr7.1/gmm_qso_psf.fits

No  QSO/REX s selected.
No  QSO/EXP s selected.
No  QSO/DEV s selected.
No  QSO/COMPs selected.
CPU times: user 21.7 s, sys: 150 ms, total: 21.8 s
Wall time: 21.8 s

LRG


In [25]:
%time train_and_validate('LRG', Nsample=500, Nmax=None, ncompmax=ncompmax, overwrite=overwrite)


Training:testing 1030:258 LRG/PSFs with 1-15 Gaussian components.
Writing /global/cscratch1/sd/ioannis/repos/desihub/desitarget/py/desitarget/mock/data/dr7.1/gmm_lrg_psf.fits

Training:testing 5365:1341 LRG/REXs with 1-15 Gaussian components.
Writing /global/cscratch1/sd/ioannis/repos/desihub/desitarget/py/desitarget/mock/data/dr7.1/gmm_lrg_rex.fits

Training:testing 779:195 LRG/EXPs with 1-15 Gaussian components.
Writing /global/cscratch1/sd/ioannis/repos/desihub/desitarget/py/desitarget/mock/data/dr7.1/gmm_lrg_exp.fits

Training:testing 7303:1826 LRG/DEVs with 1-15 Gaussian components.
Writing /global/cscratch1/sd/ioannis/repos/desihub/desitarget/py/desitarget/mock/data/dr7.1/gmm_lrg_dev.fits

Only 18 LRG/COMPs selected.
CPU times: user 35.5 s, sys: 220 ms, total: 35.7 s
Wall time: 35.7 s

ELG


In [26]:
%time train_and_validate('ELG', Nsample=500, Nmax=None, ncompmax=ncompmax, overwrite=overwrite)


Training:testing 46302:11576 ELG/PSFs with 1-15 Gaussian components.
Writing /global/cscratch1/sd/ioannis/repos/desihub/desitarget/py/desitarget/mock/data/dr7.1/gmm_elg_psf.fits

Training:testing 250188:62547 ELG/REXs with 1-15 Gaussian components.
Writing /global/cscratch1/sd/ioannis/repos/desihub/desitarget/py/desitarget/mock/data/dr7.1/gmm_elg_rex.fits

Training:testing 13460:3365 ELG/EXPs with 1-15 Gaussian components.
Writing /global/cscratch1/sd/ioannis/repos/desihub/desitarget/py/desitarget/mock/data/dr7.1/gmm_elg_exp.fits

Training:testing 2926:731 ELG/DEVs with 1-15 Gaussian components.
Writing /global/cscratch1/sd/ioannis/repos/desihub/desitarget/py/desitarget/mock/data/dr7.1/gmm_elg_dev.fits

No  ELG/COMPs selected.
CPU times: user 4min 12s, sys: 5.85 s, total: 4min 17s
Wall time: 4min 17s

BGS


In [27]:
%time train_and_validate('BGS', Nsample=500, Nmax=None, ncompmax=ncompmax, overwrite=overwrite)


No  BGS/PSF s selected.
Training:testing 31486:7872 BGS/REXs with 1-15 Gaussian components.
Writing /global/cscratch1/sd/ioannis/repos/desihub/desitarget/py/desitarget/mock/data/dr7.1/gmm_bgs_rex.fits

Training:testing 15014:3753 BGS/EXPs with 1-15 Gaussian components.
Writing /global/cscratch1/sd/ioannis/repos/desihub/desitarget/py/desitarget/mock/data/dr7.1/gmm_bgs_exp.fits

Training:testing 18935:4734 BGS/DEVs with 1-15 Gaussian components.
Writing /global/cscratch1/sd/ioannis/repos/desihub/desitarget/py/desitarget/mock/data/dr7.1/gmm_bgs_dev.fits

Training:testing 802:201 BGS/COMPs with 1-15 Gaussian components.
Writing /global/cscratch1/sd/ioannis/repos/desihub/desitarget/py/desitarget/mock/data/dr7.1/gmm_bgs_comp.fits

CPU times: user 1min 36s, sys: 468 ms, total: 1min 37s
Wall time: 1min 37s