In [1]:
%pylab inline
import sys
sys.path.append('..')
import trappy.wa


Populating the interactive namespace from numpy and matplotlib

Displaying Results

At the end of running an agenda, Workload Automation produces a summary of the results for the workloads. trappy can parse the results and tabulate it in a notebook. Additionally, an optional id argument an be passed which if supplied overrides the id in the results file.


In [2]:
results = trappy.wa.get_results("../tests")
results


Out[2]:
geekbench antutu egypt_offscreen thechase t-rex_offscreen
power_allocator step_wise power_allocator step_wise power_allocator step_wise power_allocator step_wise power_allocator step_wise
0 3 8 5 4 652 504 491.615669 242.052226 1777 2365
1 1 4 3 9 555 2507 NaN NaN 397 429
2 5 2 2 7 790 325 NaN NaN 512 424

In addition to displaying tabulated results, trappy can graphically plot individual benchmarks as well as all the benchmarks in the result.


In [3]:
results.plot_results_benchmark("antutu")



In [4]:
results.plot_results()


Combining Results

trappy allows combination of results across different agenda runs as well. This is useful if you want to compare / display results from different runs of Workload Automation


In [5]:
unconstrained = trappy.wa.get_results("../tests/unconstrained.csv", name="Unconstrained")
constrained = trappy.wa.get_results("../tests/constrained.csv", name="Constrained")

results = trappy.wa.combine_results([unconstrained, constrained])
results


Out[5]:
antutu egypt_offscreen t-rex_offscreen geekbench
Unconstrained Constrained Unconstrained Constrained Unconstrained Constrained Unconstrained Constrained
0 2 2 864 334 185 560 6 1
1 NaN NaN 802 242 878 872 6 1
2 6 7 47 190 262 918 1 3
3 4 4 NaN NaN 588 5 7 2
4 6 2 NaN NaN 559 494 9 8
5 9 8 NaN NaN NaN NaN NaN NaN

In [6]:
results.plot_results()