In [0]:

%matplotlib inline




In [0]:

import site,os
currdir=os.getcwd()



#### Q1: A satellite is in orbit 400 km above the surface, with a nadir pixel with a diameter of 50 km. Use the approach of the geometry/radiance lecture to integrate the solid angle subtended by the satellite telescope. (Assume that the surface is flat and pixel is circular). Here's the figure with the geometry:



In [0]:

from matplotlib import pyplot as plt
import numpy as np
fig,axis=plt.subplots(1,1,figsize=(6,6))
the_img=axis.imshow(img)
the_img.set_cmap('gray')



We need to find the limits of integration for $\theta$. Simple trig gives $\theta_{max} = tan^{-1} (25/400)$



In [0]:

theta_max=np.arctan(25./400.)
print "angle is %5.2f degrees" % (theta_max*180./np.pi)




In [0]:

#use the slide 8 formula
angle=2*np.pi*(-1)*(np.cos(theta_max) - 1)
print "angle is about %7.3f sr" % angle




In [0]:

#check vs. area/R^2
print "and here is the check %7.3g, not bad" % ((np.pi*25**2.)/400**2.,)



#### Q2: Suppose the satellite is observing the ground (which is emitting as a blackbody at a temperature of 300 K) with the field of view calculated in problem 1. What is the flux ($W\, m^{-2}$) reaching the satellite from that pixel, assuming no atmospheric absorption/emission, in the wavelength range $10\ \mu m < \lambda < 12\ \mu m$? (Choose nearest value)



In [0]:

import site
from planck import planckwavelen
flux=planckwavelen(11.e-6,300.)  #output is W/m^2/m binwidth
delta_lambda=2.e-6 #bin is 2 microns wide




In [0]:




In [0]:




In [0]: