In [ ]:
In [ ]:
In [1]:
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import gzip
import os
import tempfile
import numpy
from six.moves import urllib
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
In [ ]:
In [2]:
mnist = input_data.read_data_sets("/tmp/tensorflow/mnist/input_data", one_hot=True)
x = tf.placeholder(tf.float32, [None, 784])
w = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x, w) + b)
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = - tf.reduce_mean(tf.reduce_sum(y_ * tf.log(y)))
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
for _ in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
#print(sess.run(cross_entropy, feed_dict={x: batch_xs, y_: batch_ys}))
print("W:", sess.run(w))
print("b:", sess.run(b))
# array of true/false, that stores whether it predicts correct(=true) or not(false)
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_, 1))
# first case into 0/1, then calculate the accuracy
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
sess.close()
In [ ]:
In [ ]:
In [4]:
# Import data
mnist = input_data.read_data_sets("/tmp/mnist/", one_hot=True)
# Create the model
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.matmul(x, W) + b
# Define loss and optimizer
y_ = tf.placeholder(tf.float32, [None, 10])
# The raw formulation of cross-entropy,
#
# tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(tf.nn.softmax(y)),
# reduction_indices=[1]))
#
# can be numerically unstable.
#
# So here we use tf.nn.softmax_cross_entropy_with_logits on the raw
# outputs of 'y', and then average across the batch.
cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
sess = tf.Session()
init_op = tf.global_variables_initializer()
sess.run(init_op)
# Train
for _ in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
print("W:", sess.run(W))
print("b:", sess.run(b))
# Test trained model
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(sess.run(accuracy, feed_dict={x: mnist.test.images,
y_: mnist.test.labels}))
## resize the W to one-hot vector, check its parameters, do it after finished
## prediction, still we can do it, as it doesn't change W
print("W(-> one-hot vector):", sess.run(tf.reduce_sum(tf.reshape(W, [-1]))))
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]: