In [1]:
%matplotlib inline
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import datetime
from dateutil.relativedelta import relativedelta
import seaborn as sns
import statsmodels.api as sm  
from statsmodels.tsa.stattools import acf  
from statsmodels.tsa.stattools import pacf
from statsmodels.tsa.seasonal import seasonal_decompose

Data Quarterly Time Series of the Number of Australian Residents https://vincentarelbundock.github.io/Rdatasets/csv/datasets/austres.csv


In [2]:
df=pd.read_csv("https://vincentarelbundock.github.io/Rdatasets/csv/datasets/austres.csv ")

In [3]:
df=df.drop('Unnamed: 0',1)

In [4]:
df.head()


Out[4]:
time austres
0 1971.25 13067.3
1 1971.50 13130.5
2 1971.75 13198.4
3 1972.00 13254.2
4 1972.25 13303.7

In [5]:
df.tail()


Out[5]:
time austres
84 1992.25 17482.6
85 1992.50 17526.0
86 1992.75 17568.7
87 1993.00 17627.1
88 1993.25 17661.5

In [6]:
len(df)


Out[6]:
89

In [7]:
df.shape[0]


Out[7]:
89

In [8]:
start = datetime.datetime.strptime("1971-03-31", "%Y-%m-%d")
print(start)


1971-03-31 00:00:00

In [9]:
#!pip install arrow

In [10]:
start = datetime.datetime.strptime("1971-03-31", "%Y-%m-%d")
print(start)


1971-03-31 00:00:00

In [16]:
date_list = [start + relativedelta(months=x) for x in range(0,3*df.shape[0])]

In [17]:
date_list


Out[17]:
[datetime.datetime(1971, 3, 31, 0, 0),
 datetime.datetime(1971, 4, 30, 0, 0),
 datetime.datetime(1971, 5, 31, 0, 0),
 datetime.datetime(1971, 6, 30, 0, 0),
 datetime.datetime(1971, 7, 31, 0, 0),
 datetime.datetime(1971, 8, 31, 0, 0),
 datetime.datetime(1971, 9, 30, 0, 0),
 datetime.datetime(1971, 10, 31, 0, 0),
 datetime.datetime(1971, 11, 30, 0, 0),
 datetime.datetime(1971, 12, 31, 0, 0),
 datetime.datetime(1972, 1, 31, 0, 0),
 datetime.datetime(1972, 2, 29, 0, 0),
 datetime.datetime(1972, 3, 31, 0, 0),
 datetime.datetime(1972, 4, 30, 0, 0),
 datetime.datetime(1972, 5, 31, 0, 0),
 datetime.datetime(1972, 6, 30, 0, 0),
 datetime.datetime(1972, 7, 31, 0, 0),
 datetime.datetime(1972, 8, 31, 0, 0),
 datetime.datetime(1972, 9, 30, 0, 0),
 datetime.datetime(1972, 10, 31, 0, 0),
 datetime.datetime(1972, 11, 30, 0, 0),
 datetime.datetime(1972, 12, 31, 0, 0),
 datetime.datetime(1973, 1, 31, 0, 0),
 datetime.datetime(1973, 2, 28, 0, 0),
 datetime.datetime(1973, 3, 31, 0, 0),
 datetime.datetime(1973, 4, 30, 0, 0),
 datetime.datetime(1973, 5, 31, 0, 0),
 datetime.datetime(1973, 6, 30, 0, 0),
 datetime.datetime(1973, 7, 31, 0, 0),
 datetime.datetime(1973, 8, 31, 0, 0),
 datetime.datetime(1973, 9, 30, 0, 0),
 datetime.datetime(1973, 10, 31, 0, 0),
 datetime.datetime(1973, 11, 30, 0, 0),
 datetime.datetime(1973, 12, 31, 0, 0),
 datetime.datetime(1974, 1, 31, 0, 0),
 datetime.datetime(1974, 2, 28, 0, 0),
 datetime.datetime(1974, 3, 31, 0, 0),
 datetime.datetime(1974, 4, 30, 0, 0),
 datetime.datetime(1974, 5, 31, 0, 0),
 datetime.datetime(1974, 6, 30, 0, 0),
 datetime.datetime(1974, 7, 31, 0, 0),
 datetime.datetime(1974, 8, 31, 0, 0),
 datetime.datetime(1974, 9, 30, 0, 0),
 datetime.datetime(1974, 10, 31, 0, 0),
 datetime.datetime(1974, 11, 30, 0, 0),
 datetime.datetime(1974, 12, 31, 0, 0),
 datetime.datetime(1975, 1, 31, 0, 0),
 datetime.datetime(1975, 2, 28, 0, 0),
 datetime.datetime(1975, 3, 31, 0, 0),
 datetime.datetime(1975, 4, 30, 0, 0),
 datetime.datetime(1975, 5, 31, 0, 0),
 datetime.datetime(1975, 6, 30, 0, 0),
 datetime.datetime(1975, 7, 31, 0, 0),
 datetime.datetime(1975, 8, 31, 0, 0),
 datetime.datetime(1975, 9, 30, 0, 0),
 datetime.datetime(1975, 10, 31, 0, 0),
 datetime.datetime(1975, 11, 30, 0, 0),
 datetime.datetime(1975, 12, 31, 0, 0),
 datetime.datetime(1976, 1, 31, 0, 0),
 datetime.datetime(1976, 2, 29, 0, 0),
 datetime.datetime(1976, 3, 31, 0, 0),
 datetime.datetime(1976, 4, 30, 0, 0),
 datetime.datetime(1976, 5, 31, 0, 0),
 datetime.datetime(1976, 6, 30, 0, 0),
 datetime.datetime(1976, 7, 31, 0, 0),
 datetime.datetime(1976, 8, 31, 0, 0),
 datetime.datetime(1976, 9, 30, 0, 0),
 datetime.datetime(1976, 10, 31, 0, 0),
 datetime.datetime(1976, 11, 30, 0, 0),
 datetime.datetime(1976, 12, 31, 0, 0),
 datetime.datetime(1977, 1, 31, 0, 0),
 datetime.datetime(1977, 2, 28, 0, 0),
 datetime.datetime(1977, 3, 31, 0, 0),
 datetime.datetime(1977, 4, 30, 0, 0),
 datetime.datetime(1977, 5, 31, 0, 0),
 datetime.datetime(1977, 6, 30, 0, 0),
 datetime.datetime(1977, 7, 31, 0, 0),
 datetime.datetime(1977, 8, 31, 0, 0),
 datetime.datetime(1977, 9, 30, 0, 0),
 datetime.datetime(1977, 10, 31, 0, 0),
 datetime.datetime(1977, 11, 30, 0, 0),
 datetime.datetime(1977, 12, 31, 0, 0),
 datetime.datetime(1978, 1, 31, 0, 0),
 datetime.datetime(1978, 2, 28, 0, 0),
 datetime.datetime(1978, 3, 31, 0, 0),
 datetime.datetime(1978, 4, 30, 0, 0),
 datetime.datetime(1978, 5, 31, 0, 0),
 datetime.datetime(1978, 6, 30, 0, 0),
 datetime.datetime(1978, 7, 31, 0, 0),
 datetime.datetime(1978, 8, 31, 0, 0),
 datetime.datetime(1978, 9, 30, 0, 0),
 datetime.datetime(1978, 10, 31, 0, 0),
 datetime.datetime(1978, 11, 30, 0, 0),
 datetime.datetime(1978, 12, 31, 0, 0),
 datetime.datetime(1979, 1, 31, 0, 0),
 datetime.datetime(1979, 2, 28, 0, 0),
 datetime.datetime(1979, 3, 31, 0, 0),
 datetime.datetime(1979, 4, 30, 0, 0),
 datetime.datetime(1979, 5, 31, 0, 0),
 datetime.datetime(1979, 6, 30, 0, 0),
 datetime.datetime(1979, 7, 31, 0, 0),
 datetime.datetime(1979, 8, 31, 0, 0),
 datetime.datetime(1979, 9, 30, 0, 0),
 datetime.datetime(1979, 10, 31, 0, 0),
 datetime.datetime(1979, 11, 30, 0, 0),
 datetime.datetime(1979, 12, 31, 0, 0),
 datetime.datetime(1980, 1, 31, 0, 0),
 datetime.datetime(1980, 2, 29, 0, 0),
 datetime.datetime(1980, 3, 31, 0, 0),
 datetime.datetime(1980, 4, 30, 0, 0),
 datetime.datetime(1980, 5, 31, 0, 0),
 datetime.datetime(1980, 6, 30, 0, 0),
 datetime.datetime(1980, 7, 31, 0, 0),
 datetime.datetime(1980, 8, 31, 0, 0),
 datetime.datetime(1980, 9, 30, 0, 0),
 datetime.datetime(1980, 10, 31, 0, 0),
 datetime.datetime(1980, 11, 30, 0, 0),
 datetime.datetime(1980, 12, 31, 0, 0),
 datetime.datetime(1981, 1, 31, 0, 0),
 datetime.datetime(1981, 2, 28, 0, 0),
 datetime.datetime(1981, 3, 31, 0, 0),
 datetime.datetime(1981, 4, 30, 0, 0),
 datetime.datetime(1981, 5, 31, 0, 0),
 datetime.datetime(1981, 6, 30, 0, 0),
 datetime.datetime(1981, 7, 31, 0, 0),
 datetime.datetime(1981, 8, 31, 0, 0),
 datetime.datetime(1981, 9, 30, 0, 0),
 datetime.datetime(1981, 10, 31, 0, 0),
 datetime.datetime(1981, 11, 30, 0, 0),
 datetime.datetime(1981, 12, 31, 0, 0),
 datetime.datetime(1982, 1, 31, 0, 0),
 datetime.datetime(1982, 2, 28, 0, 0),
 datetime.datetime(1982, 3, 31, 0, 0),
 datetime.datetime(1982, 4, 30, 0, 0),
 datetime.datetime(1982, 5, 31, 0, 0),
 datetime.datetime(1982, 6, 30, 0, 0),
 datetime.datetime(1982, 7, 31, 0, 0),
 datetime.datetime(1982, 8, 31, 0, 0),
 datetime.datetime(1982, 9, 30, 0, 0),
 datetime.datetime(1982, 10, 31, 0, 0),
 datetime.datetime(1982, 11, 30, 0, 0),
 datetime.datetime(1982, 12, 31, 0, 0),
 datetime.datetime(1983, 1, 31, 0, 0),
 datetime.datetime(1983, 2, 28, 0, 0),
 datetime.datetime(1983, 3, 31, 0, 0),
 datetime.datetime(1983, 4, 30, 0, 0),
 datetime.datetime(1983, 5, 31, 0, 0),
 datetime.datetime(1983, 6, 30, 0, 0),
 datetime.datetime(1983, 7, 31, 0, 0),
 datetime.datetime(1983, 8, 31, 0, 0),
 datetime.datetime(1983, 9, 30, 0, 0),
 datetime.datetime(1983, 10, 31, 0, 0),
 datetime.datetime(1983, 11, 30, 0, 0),
 datetime.datetime(1983, 12, 31, 0, 0),
 datetime.datetime(1984, 1, 31, 0, 0),
 datetime.datetime(1984, 2, 29, 0, 0),
 datetime.datetime(1984, 3, 31, 0, 0),
 datetime.datetime(1984, 4, 30, 0, 0),
 datetime.datetime(1984, 5, 31, 0, 0),
 datetime.datetime(1984, 6, 30, 0, 0),
 datetime.datetime(1984, 7, 31, 0, 0),
 datetime.datetime(1984, 8, 31, 0, 0),
 datetime.datetime(1984, 9, 30, 0, 0),
 datetime.datetime(1984, 10, 31, 0, 0),
 datetime.datetime(1984, 11, 30, 0, 0),
 datetime.datetime(1984, 12, 31, 0, 0),
 datetime.datetime(1985, 1, 31, 0, 0),
 datetime.datetime(1985, 2, 28, 0, 0),
 datetime.datetime(1985, 3, 31, 0, 0),
 datetime.datetime(1985, 4, 30, 0, 0),
 datetime.datetime(1985, 5, 31, 0, 0),
 datetime.datetime(1985, 6, 30, 0, 0),
 datetime.datetime(1985, 7, 31, 0, 0),
 datetime.datetime(1985, 8, 31, 0, 0),
 datetime.datetime(1985, 9, 30, 0, 0),
 datetime.datetime(1985, 10, 31, 0, 0),
 datetime.datetime(1985, 11, 30, 0, 0),
 datetime.datetime(1985, 12, 31, 0, 0),
 datetime.datetime(1986, 1, 31, 0, 0),
 datetime.datetime(1986, 2, 28, 0, 0),
 datetime.datetime(1986, 3, 31, 0, 0),
 datetime.datetime(1986, 4, 30, 0, 0),
 datetime.datetime(1986, 5, 31, 0, 0),
 datetime.datetime(1986, 6, 30, 0, 0),
 datetime.datetime(1986, 7, 31, 0, 0),
 datetime.datetime(1986, 8, 31, 0, 0),
 datetime.datetime(1986, 9, 30, 0, 0),
 datetime.datetime(1986, 10, 31, 0, 0),
 datetime.datetime(1986, 11, 30, 0, 0),
 datetime.datetime(1986, 12, 31, 0, 0),
 datetime.datetime(1987, 1, 31, 0, 0),
 datetime.datetime(1987, 2, 28, 0, 0),
 datetime.datetime(1987, 3, 31, 0, 0),
 datetime.datetime(1987, 4, 30, 0, 0),
 datetime.datetime(1987, 5, 31, 0, 0),
 datetime.datetime(1987, 6, 30, 0, 0),
 datetime.datetime(1987, 7, 31, 0, 0),
 datetime.datetime(1987, 8, 31, 0, 0),
 datetime.datetime(1987, 9, 30, 0, 0),
 datetime.datetime(1987, 10, 31, 0, 0),
 datetime.datetime(1987, 11, 30, 0, 0),
 datetime.datetime(1987, 12, 31, 0, 0),
 datetime.datetime(1988, 1, 31, 0, 0),
 datetime.datetime(1988, 2, 29, 0, 0),
 datetime.datetime(1988, 3, 31, 0, 0),
 datetime.datetime(1988, 4, 30, 0, 0),
 datetime.datetime(1988, 5, 31, 0, 0),
 datetime.datetime(1988, 6, 30, 0, 0),
 datetime.datetime(1988, 7, 31, 0, 0),
 datetime.datetime(1988, 8, 31, 0, 0),
 datetime.datetime(1988, 9, 30, 0, 0),
 datetime.datetime(1988, 10, 31, 0, 0),
 datetime.datetime(1988, 11, 30, 0, 0),
 datetime.datetime(1988, 12, 31, 0, 0),
 datetime.datetime(1989, 1, 31, 0, 0),
 datetime.datetime(1989, 2, 28, 0, 0),
 datetime.datetime(1989, 3, 31, 0, 0),
 datetime.datetime(1989, 4, 30, 0, 0),
 datetime.datetime(1989, 5, 31, 0, 0),
 datetime.datetime(1989, 6, 30, 0, 0),
 datetime.datetime(1989, 7, 31, 0, 0),
 datetime.datetime(1989, 8, 31, 0, 0),
 datetime.datetime(1989, 9, 30, 0, 0),
 datetime.datetime(1989, 10, 31, 0, 0),
 datetime.datetime(1989, 11, 30, 0, 0),
 datetime.datetime(1989, 12, 31, 0, 0),
 datetime.datetime(1990, 1, 31, 0, 0),
 datetime.datetime(1990, 2, 28, 0, 0),
 datetime.datetime(1990, 3, 31, 0, 0),
 datetime.datetime(1990, 4, 30, 0, 0),
 datetime.datetime(1990, 5, 31, 0, 0),
 datetime.datetime(1990, 6, 30, 0, 0),
 datetime.datetime(1990, 7, 31, 0, 0),
 datetime.datetime(1990, 8, 31, 0, 0),
 datetime.datetime(1990, 9, 30, 0, 0),
 datetime.datetime(1990, 10, 31, 0, 0),
 datetime.datetime(1990, 11, 30, 0, 0),
 datetime.datetime(1990, 12, 31, 0, 0),
 datetime.datetime(1991, 1, 31, 0, 0),
 datetime.datetime(1991, 2, 28, 0, 0),
 datetime.datetime(1991, 3, 31, 0, 0),
 datetime.datetime(1991, 4, 30, 0, 0),
 datetime.datetime(1991, 5, 31, 0, 0),
 datetime.datetime(1991, 6, 30, 0, 0),
 datetime.datetime(1991, 7, 31, 0, 0),
 datetime.datetime(1991, 8, 31, 0, 0),
 datetime.datetime(1991, 9, 30, 0, 0),
 datetime.datetime(1991, 10, 31, 0, 0),
 datetime.datetime(1991, 11, 30, 0, 0),
 datetime.datetime(1991, 12, 31, 0, 0),
 datetime.datetime(1992, 1, 31, 0, 0),
 datetime.datetime(1992, 2, 29, 0, 0),
 datetime.datetime(1992, 3, 31, 0, 0),
 datetime.datetime(1992, 4, 30, 0, 0),
 datetime.datetime(1992, 5, 31, 0, 0),
 datetime.datetime(1992, 6, 30, 0, 0),
 datetime.datetime(1992, 7, 31, 0, 0),
 datetime.datetime(1992, 8, 31, 0, 0),
 datetime.datetime(1992, 9, 30, 0, 0),
 datetime.datetime(1992, 10, 31, 0, 0),
 datetime.datetime(1992, 11, 30, 0, 0),
 datetime.datetime(1992, 12, 31, 0, 0),
 datetime.datetime(1993, 1, 31, 0, 0),
 datetime.datetime(1993, 2, 28, 0, 0),
 datetime.datetime(1993, 3, 31, 0, 0),
 datetime.datetime(1993, 4, 30, 0, 0),
 datetime.datetime(1993, 5, 31, 0, 0)]

In [18]:
len(date_list)


Out[18]:
267

In [19]:
c2=[]
for i in range(0,3*len(df),3):
    c2.append(date_list[i])

In [20]:
c2


Out[20]:
[datetime.datetime(1971, 3, 31, 0, 0),
 datetime.datetime(1971, 6, 30, 0, 0),
 datetime.datetime(1971, 9, 30, 0, 0),
 datetime.datetime(1971, 12, 31, 0, 0),
 datetime.datetime(1972, 3, 31, 0, 0),
 datetime.datetime(1972, 6, 30, 0, 0),
 datetime.datetime(1972, 9, 30, 0, 0),
 datetime.datetime(1972, 12, 31, 0, 0),
 datetime.datetime(1973, 3, 31, 0, 0),
 datetime.datetime(1973, 6, 30, 0, 0),
 datetime.datetime(1973, 9, 30, 0, 0),
 datetime.datetime(1973, 12, 31, 0, 0),
 datetime.datetime(1974, 3, 31, 0, 0),
 datetime.datetime(1974, 6, 30, 0, 0),
 datetime.datetime(1974, 9, 30, 0, 0),
 datetime.datetime(1974, 12, 31, 0, 0),
 datetime.datetime(1975, 3, 31, 0, 0),
 datetime.datetime(1975, 6, 30, 0, 0),
 datetime.datetime(1975, 9, 30, 0, 0),
 datetime.datetime(1975, 12, 31, 0, 0),
 datetime.datetime(1976, 3, 31, 0, 0),
 datetime.datetime(1976, 6, 30, 0, 0),
 datetime.datetime(1976, 9, 30, 0, 0),
 datetime.datetime(1976, 12, 31, 0, 0),
 datetime.datetime(1977, 3, 31, 0, 0),
 datetime.datetime(1977, 6, 30, 0, 0),
 datetime.datetime(1977, 9, 30, 0, 0),
 datetime.datetime(1977, 12, 31, 0, 0),
 datetime.datetime(1978, 3, 31, 0, 0),
 datetime.datetime(1978, 6, 30, 0, 0),
 datetime.datetime(1978, 9, 30, 0, 0),
 datetime.datetime(1978, 12, 31, 0, 0),
 datetime.datetime(1979, 3, 31, 0, 0),
 datetime.datetime(1979, 6, 30, 0, 0),
 datetime.datetime(1979, 9, 30, 0, 0),
 datetime.datetime(1979, 12, 31, 0, 0),
 datetime.datetime(1980, 3, 31, 0, 0),
 datetime.datetime(1980, 6, 30, 0, 0),
 datetime.datetime(1980, 9, 30, 0, 0),
 datetime.datetime(1980, 12, 31, 0, 0),
 datetime.datetime(1981, 3, 31, 0, 0),
 datetime.datetime(1981, 6, 30, 0, 0),
 datetime.datetime(1981, 9, 30, 0, 0),
 datetime.datetime(1981, 12, 31, 0, 0),
 datetime.datetime(1982, 3, 31, 0, 0),
 datetime.datetime(1982, 6, 30, 0, 0),
 datetime.datetime(1982, 9, 30, 0, 0),
 datetime.datetime(1982, 12, 31, 0, 0),
 datetime.datetime(1983, 3, 31, 0, 0),
 datetime.datetime(1983, 6, 30, 0, 0),
 datetime.datetime(1983, 9, 30, 0, 0),
 datetime.datetime(1983, 12, 31, 0, 0),
 datetime.datetime(1984, 3, 31, 0, 0),
 datetime.datetime(1984, 6, 30, 0, 0),
 datetime.datetime(1984, 9, 30, 0, 0),
 datetime.datetime(1984, 12, 31, 0, 0),
 datetime.datetime(1985, 3, 31, 0, 0),
 datetime.datetime(1985, 6, 30, 0, 0),
 datetime.datetime(1985, 9, 30, 0, 0),
 datetime.datetime(1985, 12, 31, 0, 0),
 datetime.datetime(1986, 3, 31, 0, 0),
 datetime.datetime(1986, 6, 30, 0, 0),
 datetime.datetime(1986, 9, 30, 0, 0),
 datetime.datetime(1986, 12, 31, 0, 0),
 datetime.datetime(1987, 3, 31, 0, 0),
 datetime.datetime(1987, 6, 30, 0, 0),
 datetime.datetime(1987, 9, 30, 0, 0),
 datetime.datetime(1987, 12, 31, 0, 0),
 datetime.datetime(1988, 3, 31, 0, 0),
 datetime.datetime(1988, 6, 30, 0, 0),
 datetime.datetime(1988, 9, 30, 0, 0),
 datetime.datetime(1988, 12, 31, 0, 0),
 datetime.datetime(1989, 3, 31, 0, 0),
 datetime.datetime(1989, 6, 30, 0, 0),
 datetime.datetime(1989, 9, 30, 0, 0),
 datetime.datetime(1989, 12, 31, 0, 0),
 datetime.datetime(1990, 3, 31, 0, 0),
 datetime.datetime(1990, 6, 30, 0, 0),
 datetime.datetime(1990, 9, 30, 0, 0),
 datetime.datetime(1990, 12, 31, 0, 0),
 datetime.datetime(1991, 3, 31, 0, 0),
 datetime.datetime(1991, 6, 30, 0, 0),
 datetime.datetime(1991, 9, 30, 0, 0),
 datetime.datetime(1991, 12, 31, 0, 0),
 datetime.datetime(1992, 3, 31, 0, 0),
 datetime.datetime(1992, 6, 30, 0, 0),
 datetime.datetime(1992, 9, 30, 0, 0),
 datetime.datetime(1992, 12, 31, 0, 0),
 datetime.datetime(1993, 3, 31, 0, 0)]

In [21]:
len(c2)


Out[21]:
89

In [22]:
df['index'] =c2
df.set_index(['index'], inplace=True)
df.index.name=None

In [23]:
df.head()


Out[23]:
time austres
1971-03-31 1971.25 13067.3
1971-06-30 1971.50 13130.5
1971-09-30 1971.75 13198.4
1971-12-31 1972.00 13254.2
1972-03-31 1972.25 13303.7

In [24]:
df=df.drop('time',1)

In [25]:
df.tail()


Out[25]:
austres
1992-03-31 17482.6
1992-06-30 17526.0
1992-09-30 17568.7
1992-12-31 17627.1
1993-03-31 17661.5

In [26]:
df.austres.plot(figsize=(12,8), title= 'Number of Australian Residents', fontsize=14)
plt.savefig('austrailian_residents.png', bbox_inches='tight')



In [27]:
decomposition = seasonal_decompose(df.austres, freq=4)  
fig = plt.figure()  
fig = decomposition.plot()  
fig.set_size_inches(15, 8)


<matplotlib.figure.Figure at 0xb880a58>

In [28]:
# Define the p, d and q parameters to take any value between 0 and 2
p = d = q = range(0, 2)
print(p)


range(0, 2)

In [29]:
import itertools
import warnings

In [30]:
# Generate all different combinations of p, q and q triplets
pdq = list(itertools.product(p, d, q))
print(pdq)


[(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)]

In [31]:
# Generate all different combinations of seasonal p, q and q triplets
seasonal_pdq = [(x[0], x[1], x[2], 12) for x in list(itertools.product(p, d, q))]

print('Examples of parameter combinations for Seasonal ARIMA...')
print('SARIMAX: {} x {}'.format(pdq[1], seasonal_pdq[1]))
print('SARIMAX: {} x {}'.format(pdq[1], seasonal_pdq[2]))
print('SARIMAX: {} x {}'.format(pdq[2], seasonal_pdq[3]))
print('SARIMAX: {} x {}'.format(pdq[2], seasonal_pdq[4]))


Examples of parameter combinations for Seasonal ARIMA...
SARIMAX: (0, 0, 1) x (0, 0, 1, 12)
SARIMAX: (0, 0, 1) x (0, 1, 0, 12)
SARIMAX: (0, 1, 0) x (0, 1, 1, 12)
SARIMAX: (0, 1, 0) x (1, 0, 0, 12)

In [32]:
y=df

In [39]:
warnings.filterwarnings("ignore") # specify to ignore warning messages
c4=[]
for param in pdq:
    for param_seasonal in seasonal_pdq:
        try:
            mod = sm.tsa.statespace.SARIMAX(y,
                                            order=param,
                                            seasonal_order=param_seasonal,
                                            enforce_stationarity=False,
                                            enforce_invertibility=False)

            results = mod.fit()

            print('ARIMA{}x{}12 - AIC:{}'.format(param, param_seasonal, results.aic))
            c4.append('ARIMA{}x{}12 - AIC:{}'.format(param, param_seasonal, results.aic))
        except:
            continue


ARIMA(0, 0, 0)x(0, 0, 1, 12)12 - AIC:1640.498695405866
ARIMA(0, 0, 0)x(0, 1, 1, 12)12 - AIC:957.7157324475122
ARIMA(0, 0, 0)x(1, 0, 0, 12)12 - AIC:901.8737542488778
ARIMA(0, 0, 0)x(1, 0, 1, 12)12 - AIC:893.4970589310027
ARIMA(0, 0, 0)x(1, 1, 0, 12)12 - AIC:821.5535708474058
ARIMA(0, 0, 0)x(1, 1, 1, 12)12 - AIC:789.9330545732091
ARIMA(0, 0, 1)x(0, 0, 0, 12)12 - AIC:1866.0471769096082
ARIMA(0, 0, 1)x(0, 0, 1, 12)12 - AIC:3925.760426368583
ARIMA(0, 0, 1)x(0, 1, 0, 12)12 - AIC:1086.733456078065
ARIMA(0, 0, 1)x(0, 1, 1, 12)12 - AIC:917.9195061799221
ARIMA(0, 0, 1)x(1, 0, 0, 12)12 - AIC:808.5017824725799
ARIMA(0, 0, 1)x(1, 0, 1, 12)12 - AIC:1543.673635439925
ARIMA(0, 0, 1)x(1, 1, 0, 12)12 - AIC:742.4302886984069
ARIMA(0, 0, 1)x(1, 1, 1, 12)12 - AIC:722.8237967086055
ARIMA(0, 1, 0)x(0, 0, 1, 12)12 - AIC:751.9874335168838
ARIMA(0, 1, 0)x(0, 1, 1, 12)12 - AIC:518.4115822594365
ARIMA(0, 1, 0)x(1, 0, 0, 12)12 - AIC:642.4135683750286
ARIMA(0, 1, 0)x(1, 0, 1, 12)12 - AIC:618.5002080638922
ARIMA(0, 1, 0)x(1, 1, 0, 12)12 - AIC:531.3805164392139
ARIMA(0, 1, 0)x(1, 1, 1, 12)12 - AIC:523.4816750307536
ARIMA(0, 1, 1)x(0, 0, 0, 12)12 - AIC:840.8735543936959
ARIMA(0, 1, 1)x(0, 0, 1, 12)12 - AIC:682.127882296428
ARIMA(0, 1, 1)x(0, 1, 0, 12)12 - AIC:603.9099307476866
ARIMA(0, 1, 1)x(0, 1, 1, 12)12 - AIC:495.8422863919097
ARIMA(0, 1, 1)x(1, 0, 0, 12)12 - AIC:617.5943005442614
ARIMA(0, 1, 1)x(1, 0, 1, 12)12 - AIC:591.2669779528502
ARIMA(0, 1, 1)x(1, 1, 0, 12)12 - AIC:513.4941880115649
ARIMA(0, 1, 1)x(1, 1, 1, 12)12 - AIC:499.3274255512188
ARIMA(1, 0, 0)x(0, 0, 0, 12)12 - AIC:693.3693646362891
ARIMA(1, 0, 0)x(0, 0, 1, 12)12 - AIC:602.5140387938435
ARIMA(1, 0, 0)x(0, 1, 0, 12)12 - AIC:645.001916659511
ARIMA(1, 0, 0)x(0, 1, 1, 12)12 - AIC:547.3449848000671
ARIMA(1, 0, 0)x(1, 0, 0, 12)12 - AIC:602.4556470408446
ARIMA(1, 0, 0)x(1, 0, 1, 12)12 - AIC:624.5638559731884
ARIMA(1, 0, 0)x(1, 1, 0, 12)12 - AIC:531.2783134356048
ARIMA(1, 0, 0)x(1, 1, 1, 12)12 - AIC:533.5546859038316
ARIMA(1, 0, 1)x(0, 0, 0, 12)12 - AIC:666.2777676583347
ARIMA(1, 0, 1)x(0, 0, 1, 12)12 - AIC:580.9817850545888
ARIMA(1, 0, 1)x(0, 1, 0, 12)12 - AIC:612.6194903691924
ARIMA(1, 0, 1)x(0, 1, 1, 12)12 - AIC:521.6892013270732
ARIMA(1, 0, 1)x(1, 0, 0, 12)12 - AIC:587.6090324333155
ARIMA(1, 0, 1)x(1, 0, 1, 12)12 - AIC:591.7145943326105
ARIMA(1, 0, 1)x(1, 1, 0, 12)12 - AIC:528.2690148815029
ARIMA(1, 0, 1)x(1, 1, 1, 12)12 - AIC:522.7935221968817
ARIMA(1, 1, 0)x(0, 0, 0, 12)12 - AIC:672.9256770997605
ARIMA(1, 1, 0)x(0, 0, 1, 12)12 - AIC:585.9149198758939
ARIMA(1, 1, 0)x(0, 1, 0, 12)12 - AIC:583.4588768991518
ARIMA(1, 1, 0)x(0, 1, 1, 12)12 - AIC:488.7871526210009
ARIMA(1, 1, 0)x(1, 0, 0, 12)12 - AIC:579.4968615966471
ARIMA(1, 1, 0)x(1, 0, 1, 12)12 - AIC:577.250438697217
ARIMA(1, 1, 0)x(1, 1, 0, 12)12 - AIC:489.46855508137503
ARIMA(1, 1, 0)x(1, 1, 1, 12)12 - AIC:491.36637011306703
ARIMA(1, 1, 1)x(0, 0, 0, 12)12 - AIC:647.409736875269
ARIMA(1, 1, 1)x(0, 0, 1, 12)12 - AIC:562.1176939708737
ARIMA(1, 1, 1)x(0, 1, 0, 12)12 - AIC:568.0507913265876
ARIMA(1, 1, 1)x(0, 1, 1, 12)12 - AIC:477.45261483171817
ARIMA(1, 1, 1)x(1, 0, 0, 12)12 - AIC:564.4880395495423
ARIMA(1, 1, 1)x(1, 0, 1, 12)12 - AIC:558.0865701996705
ARIMA(1, 1, 1)x(1, 1, 0, 12)12 - AIC:485.3372280690333
ARIMA(1, 1, 1)x(1, 1, 1, 12)12 - AIC:480.32582361973095

In [40]:
warnings.filterwarnings("ignore") # specify to ignore warning messages
c3=[]
for param in pdq:
    for param_seasonal in seasonal_pdq:
        try:
            mod = sm.tsa.statespace.SARIMAX(y,
                                            order=param,
                                            seasonal_order=param_seasonal,
                                            enforce_stationarity=False,
                                            enforce_invertibility=False)

            results = mod.fit()

            c3.append( results.aic)
        except:
            continue

In [41]:
c3


Out[41]:
[1640.4986954058661,
 957.71573244751221,
 901.87375424887784,
 893.4970589310027,
 821.55357084740581,
 789.93305457320912,
 1866.0471769096082,
 3925.760426368583,
 1086.733456078065,
 917.91950617992211,
 808.50178247257986,
 1543.673635439925,
 742.43028869840691,
 722.82379670860553,
 751.98743351688381,
 518.4115822594365,
 642.4135683750286,
 618.50020806389216,
 531.38051643921392,
 523.48167503075365,
 840.87355439369594,
 682.12788229642797,
 603.90993074768664,
 495.84228639190968,
 617.59430054426139,
 591.2669779528502,
 513.49418801156492,
 499.32742555121882,
 693.36936463628911,
 602.5140387938435,
 645.00191665951104,
 547.3449848000671,
 602.45564704084461,
 624.56385597318842,
 531.27831343560479,
 533.55468590383157,
 666.27776765833471,
 580.98178505458884,
 612.61949036919236,
 521.68920132707319,
 587.60903243331552,
 591.71459433261055,
 528.26901488150293,
 522.79352219688167,
 672.92567709976049,
 585.91491987589393,
 583.45887689915185,
 488.78715262100093,
 579.49686159664714,
 577.25043869721696,
 489.46855508137503,
 491.36637011306703,
 647.409736875269,
 562.11769397087369,
 568.05079132658761,
 477.45261483171817,
 564.48803954954235,
 558.08657019967052,
 485.3372280690333,
 480.32582361973095]

In [43]:
len(c3)


Out[43]:
60

In [44]:
import numpy as np
index_min = np.argmin(c3)

In [45]:
index_min


Out[45]:
55

In [46]:
c4[index_min]


Out[46]:
'ARIMA(1, 1, 1)x(0, 1, 1, 12)12 - AIC:477.45261483171817'

In [47]:
type(c4[index_min])


Out[47]:
str

In [ ]:
from statsmodels.tsa.x13 import x13_arima_select_order

In [74]:
order1=c4[index_min][6:13]
order1


Out[74]:
'1, 1, 1'

In [75]:
type(order1)


Out[75]:
str

In [77]:
order1=[int(s) for s in order1.split(',')]
order1


Out[77]:
[1, 1, 1]

In [78]:
type(order1)


Out[78]:
list

In [81]:
seasonal_order1=c4[index_min][16:27]
seasonal_order1


Out[81]:
'0, 1, 1, 12'

In [82]:
seasonal_order1=[int(s) for s in seasonal_order1.split(',')]
seasonal_order1


Out[82]:
[0, 1, 1, 12]

In [83]:
mod = sm.tsa.statespace.SARIMAX(df.austres, trend='n', order=order1, seasonal_order=seasonal_order1)

In [84]:
results = mod.fit()
print (results.summary())


                                 Statespace Model Results                                 
==========================================================================================
Dep. Variable:                            austres   No. Observations:                   89
Model:             SARIMAX(1, 1, 1)x(0, 1, 1, 12)   Log Likelihood                -283.908
Date:                            Tue, 23 May 2017   AIC                            575.816
Time:                                    23:27:35   BIC                            585.771
Sample:                                03-31-1971   HQIC                           579.829
                                     - 03-31-1993                                         
Covariance Type:                              opg                                         
==============================================================================
                 coef    std err          z      P>|z|      [0.025      0.975]
------------------------------------------------------------------------------
ar.L1          0.9163      0.066     13.797      0.000       0.786       1.047
ma.L1         -0.4557      0.139     -3.283      0.001      -0.728      -0.184
ma.S.L12      -0.4914      0.210     -2.345      0.019      -0.902      -0.081
sigma2        97.8677     10.160      9.633      0.000      77.955     117.781
===================================================================================
Ljung-Box (Q):                       20.99   Jarque-Bera (JB):                79.64
Prob(Q):                              0.99   Prob(JB):                         0.00
Heteroskedasticity (H):               3.34   Skew:                            -1.19
Prob(H) (two-sided):                  0.00   Kurtosis:                         7.42
===================================================================================

Warnings:
[1] Covariance matrix calculated using the outer product of gradients (complex-step).

In [85]:
results.predict(start=78,end=99)


Out[85]:
1990-09-30    17154.504726
1990-12-31    17232.721671
1991-03-31    17292.787820
1991-06-30    17356.532926
1991-09-30    17416.677379
1991-12-31    17478.884490
1992-03-31    17483.140550
1992-06-30    17521.456437
1992-09-30    17573.650282
1992-12-31    17618.031624
1993-03-31    17673.833098
1993-06-30    17686.742802
1993-09-30    17735.686265
1993-12-31    17793.317610
1994-03-31    17836.466110
1994-06-30    17890.975226
1994-09-30    17944.622703
1994-12-31    17986.865712
1995-03-31    18023.737569
1995-06-30    18066.224321
1995-09-30    18111.537395
1995-12-31    18166.767228
Freq: Q-DEC, dtype: float64

In [86]:
results.predict(start=78,end=99).plot()


Out[86]:
<matplotlib.axes._subplots.AxesSubplot at 0xc1782e8>

In [ ]: