In [6]:
%matplotlib notebook
In [8]:
# imports
import numpy as np
from matplotlib import pyplot as plt
from dla_cnn import io as dla_io
In [3]:
g16_abs = dla_io.load_garnett16()
In [4]:
gdp = g16_abs['pDLAD'] > 0.
In [9]:
pDLAD = g16_abs['pDLAD'][gdp]
In [10]:
plt.clf()
ax = plt.gca()
ax.hist(pDLAD)
# Label
ax.set_xlabel('pDLAD')
plt.show()
In [12]:
srt = np.argsort(pDLAD)
In [13]:
ydum = np.arange(len(pDLAD)) / len(pDLAD)
In [14]:
plt.clf()
ax = plt.gca()
ax.plot(pDLAD[srt], ydum)
#
ax.set_ylabel('Cumulative')
ax.set_xlabel('pDLAD')
plt.show()
In [15]:
for pcut in [0.9, 0.95, 0.99, 0.999]:
print(pcut, np.sum(pDLAD > pcut))
In [ ]: