``````

In [1]:

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
sns.set(style="ticks", color_codes=True, font_scale=1.5)
sns.set_style({"xtick.direction": "in", "ytick.direction": "in"})
%matplotlib inline

``````

## Kinetics in the FES model

We use the denaturant dependent thermodynamics to estimate kinetics at different final denaturant concentrations.

``````

In [2]:

from prefur import thermo
from prefur import kinetics
FES = thermo.FES(65)

beta = 1/(8.314e-3 * 300)
denat = range(0,30,1)
pf = []
pu = []
bf = []
bu = []
kf = []
ku = []
DGeqD = []
fig, ax = plt.subplots(1,2, figsize=(8,3.5))
for i in denat:
FES.denature(i)
a,b,c = thermo.stability(FES.nat, FES.DGdenat)
ax[0].plot(FES.nat, FES.DGdenat, color=plt.cm.RdYlBu_r(i/20.))
pf.append(a)
pu.append(b)
a, b = thermo.barrier(FES.DGdenat)
bf.append(a)
bu.append(b)
kf.append(kinetics.rates(barrier=bf[-1], nres=65))
ku.append(kinetics.rates(barrier=bu[-1], nres=65))

ax[1].semilogy([x for x in denat], kf, alpha=0.5)
ax[1].semilogy([x for x in denat], ku, alpha=0.5)
ax[1].semilogy([x for x in denat], [x+y for x,y in zip(kf,ku)])
ax[1].set_xlim(0,25)
ax[1].set_ylim(3e-1,5e1)
ax[0].set_ylabel('\$\Delta G(F_D, n)\$', fontsize=18)
ax[0].set_xlabel('\$n\$', fontsize=18)
ax[1].set_ylabel('\$k\$ (s\$^{-1})\$', fontsize=18)
ax[1].set_xlabel('\$F_D\$ (kJ/mol)', fontsize=18)
plt.tight_layout()

``````
``````

``````
``````

In [3]:

fig, ax = plt.subplots()
ax.semilogy([x for x in denat], kf, lw=3, alpha=0.5)
ax.semilogy([x for x in denat], ku, lw=3, alpha=0.5)
ax.semilogy([x for x in denat], [x+y for x,y in zip(kf,ku)], lw=3)
ax.set_xlim(0,25)
ax.set_ylim(5e-1,3.5e1)
ax.set_ylabel('\$k\$ (s\$^{-1})\$', fontsize=18)
ax.set_xlabel('\$F_D\$ (kJ/mol)', fontsize=18)
plt.tight_layout()
#fig.savefig("chevron.png", dpi=300)

``````
``````

``````
``````

In [ ]:

``````