In [27]:
Now let's try some more advanced funtions.
In [28]:
log10(10)
The standard Python distribution only comes with the bare-bone capabilities. Other functionality can be accessed through modules using the import
command. To access a function using the following syntax.
import <module>
<module>.<function>
Here's an example.
In [31]:
import math
math.log10(10)
Out[31]:
What if I don't know how to use a function, you can access the documentation.
? <module>.<function>
Let's look at the documentation of math.log10
In [30]:
? math.log10
In [7]:
my_name =
In [32]:
intro = 'Hello, my name is '
print(intro + my_name + '.')
Strings can all be indexed.
In [34]:
first_initial = 'My first initial is '
print(first_initial + my_name[0] + '.')
Try and pick out all of your initials.
In [33]:
initials = 'My initials are '
print(initials + my_name[0] + my_name[] + ".")
In [44]:
import numpy as np
B = np.ones((3, 3))
print(B)
Use the cell below to manipulate the array we just created.
In [ ]:
Let's do some simple matrix multiplication using np.dot
.
First checkout the documentation of np.dot
.
In [ ]:
? np.dot
In [43]:
N =
A = np.eye(N) * 2
x = np.arange(N)
print('A =')
print(A)
print('x =')
print(x)
print('y =')
print(y)
Use the cell below to call another function from NumPy.
In [ ]:
Scikit-Learn, a.k.a. sklearn
, is a scientific toolkit (there are many others) for machine learning and it built on SciPy and NumPy.
Below is an example from scikit-learn for linear regression.
This example also using the plotting library matplotlib
to display the results.
In [37]:
%matplotlib inline
# Code source: Jaques Grobler
# License: BSD 3 clause
import matplotlib.pyplot as plt
from sklearn import datasets, linear_model
# Load the diabetes dataset
diabetes = datasets.load_diabetes()
# Use only one feature
diabetes_X = diabetes.data[:, np.newaxis]
diabetes_X_temp = diabetes_X[:, :, 2]
# Split the data into training/testing sets
diabetes_X_train = diabetes_X_temp[:-20]
diabetes_X_test = diabetes_X_temp[-20:]
# Split the targets into training/testing sets
diabetes_y_train = diabetes.target[:-20]
diabetes_y_test = diabetes.target[-20:]
# Create linear regression object
regr = linear_model.LinearRegression()
# Train the model using the training sets
# regr.fit(diabetes_X_train, diabetes_y_train)
# Predict result
# y = regr.predict(diabetes_X_test)
# The coefficients
print('Coefficients: \n', regr.coef_)
# The mean square error
print("Residual sum of squares: %.2f"
% np.mean((y - diabetes_y_test) ** 2))
# Explained variance score: 1 is perfect prediction
print('Variance score: %.2f' % regr.score(diabetes_X_test, diabetes_y_test))
# Plot outputs
plt.scatter(diabetes_X_test, diabetes_y_test, color='black')
plt.plot(diabetes_X_test, y, color='blue', linewidth=3)
plt.xticks(())
plt.yticks(())
plt.show()
In [ ]: