We can find, at least, three global university rankings with different methodologies to classify the better schools:
The Times World University Ranking:
The China World University Ranking:
The CWUR World University Ranking:
Year | Link (website) |
---|---|
2016 | http://cwur.org/2016.php |
2015 | http://cwur.org/2015.php |
2014 | http://cwur.org/2014.php |
2013 | http://cwur.org/2013.php |
2012 | http://cwur.org/2012.php |
In [54]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
## CWUR 2016 dataset
datacwur2016 = 'data/cwur2016.csv'
cwur2016 = pd.read_csv(datacwur2016)
In [46]:
cwur2016.head(10)
Out[46]:
In [40]:
cwur2016.groupby('Location').count().sort_values(by=['World Rank'], ascending=[False]).head(5)
Out[40]:
In [44]:
cwur2016['Location'].value_counts()
Out[44]:
In [38]:
cwur2016.loc[cwur2016['Location'] == 'USA']['Location'].count()
Out[38]:
In [49]:
cwur2016.loc[cwur2016['Location'] == 'Brazil']['Institution']
Out[49]:
In [50]:
cwur2016.loc[cwur2016['Location'] == 'Brazil']['Institution'].count()
Out[50]:
In [56]:
# Defining a specific Data Frame to plot
cwur_graph = cwur2016['Location'].value_counts()
In [ ]: