Plot Overthrust RTM Results
Daniel Köhn
Kiel, 02/04/2016
Import necessary packages
In [ ]:
from __future__ import division
import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np
from matplotlib.colors import LightSource, Normalize
from matplotlib.pyplot import gca
from pylab import rcParams
from matplotlib import rc
import scipy.ndimage.filters
from scipy.ndimage.filters import gaussian_filter
from scipy.signal import hilbert
from mpl_toolkits.axes_grid1 import make_axes_locatable
import pickle
Activate different post-processing options
In [ ]:
ENVELOPE=0;
GAUSSIAN=1;
FD grid dimensions
In [ ]:
DH = 25.0;
NX = 800;
NY = 186;
Define Axis
In [ ]:
x = np.arange(0.0, DH*NX, DH)
y = np.arange(0.0, DH*NY, DH)
Define fonts
In [ ]:
FSize = 20
font = {'color': 'black',
'weight': 'bold',
'size': FSize}
mpl.rc('xtick', labelsize=FSize)
mpl.rc('ytick', labelsize=FSize)
rcParams['figure.figsize'] = 12, 7
Read S-wave velocity model and RTM result
In [ ]:
#f = open ('../start/overthrust_start_smooth2.vp')
f = open ('../FWI_GERMAINE/29_09_2016_lbfgs_app_Hessian/overthrust_fwi_smooth.vp')
data_type = np.dtype ('float32').newbyteorder ('<')
vp = np.fromfile (f, dtype=data_type)
vp = vp.reshape(NX,NY)
vp = np.transpose(vp)
vp = np.flipud(vp)
In [ ]:
f1 = open ('29_09_2016_fwi/modelTest_p_image.bin')
#f1 = open ('21_08_2016_smooth2/modelTest_p_image.bin')
RTM = np.fromfile (f1, dtype=data_type)
RTM = RTM.reshape(NX,NY)
RTM = np.transpose(RTM)
RTM = np.flipud(RTM)
RTM = scipy.ndimage.filters.laplace(RTM) # suppress low-wavenumber artifacts in image
Scale RTM result with depth
In [ ]:
RTM_scale = np.zeros((NX,NY))
RTM_scale += np.flipud(y)**2
RTM*=RTM_scale.transpose()
Apply Gaussian filter
In [ ]:
if(GAUSSIAN==1):
RTM = gaussian_filter(RTM, sigma=[1,3])
Calculate Envelope
In [ ]:
if(ENVELOPE==1):
analytic_signal = hilbert(RTM,axis=-1)
RTM = np.abs(analytic_signal)
RTM = gaussian_filter(RTM, sigma=[3,1])
Plot $\alpha$-Blending of Vp FWI result (Jet) and Laplace-filtered RTM result (Gray)
In [ ]:
def do_plot(n, an, title):
ax=plt.subplot(2, 1, n)
extent = [0.0,NX*DH/1000.0,0.0,NY*DH/1000.0]
#cmax = 2.5e11 # Overthrust (initial model)
cmax = 3e-2 # Overthrust (FWI)
cmin = -cmax
plt.rc('font',**{'family':'sans-serif','sans-serif':['Helvetica']})
plt.rc('text', usetex=True)
if(n==1):
im1 = plt.imshow(vp, cmap=plt.cm.jet, interpolation='nearest', extent=extent)
plt.hold(True)
im2 = plt.imshow(RTM, cmap=plt.cm.gray, alpha=.70, interpolation='bicubic',
extent=extent, vmin=cmin, vmax=cmax)
a = gca()
a.set_xticklabels(a.get_xticks(), font)
a.set_yticklabels(a.get_yticks(), font)
#plt.axis('scaled')
plt.title(title, fontdict=font)
plt.ylabel('Depth [km]', fontdict=font)
if(n==2):
plt.xlabel('Distance [km]', fontdict=font)
plt.gca().invert_yaxis()
plt.text(0.1, 0.6,an,fontdict=font,color='white')
#cbar=plt.colorbar()
#cbar.set_label('Vp[m/s]', fontdict=font, labelpad=1)
Plot SubPlots
In [ ]:
plt.close('all')
plt.figure()
do_plot(1, '(a)', r"Overthrust-RTM (smooth FWI result)")
do_plot(2, '(b)', r" ")
#plt.savefig('test.png', format='png', dpi=100)
plt.savefig('test.pdf', bbox_inches='tight', format='pdf')
plt.tight_layout()
plt.show()
In [ ]: