In [1]:
%matplotlib inline
%load_ext autoreload
%autoreload 2
from __future__ import print_function
import os
import sys
import matplotlib.pyplot as plt
from keras.applications.imagenet_utils import preprocess_input
from keras.models import load_model
from keras.datasets import mnist
sys.path.append('..')
from utils import display_examples, RotNetDataGenerator, angle_error, binarize_images
In [2]:
(X_train, y_train), (X_test, y_test) = mnist.load_data()
In [3]:
model_location = os.path.join('..', 'models', 'rotnet_mnist.hdf5')
model = load_model(model_location, custom_objects={'angle_error': angle_error})
In [4]:
batch_size = 128
out = model.evaluate_generator(
RotNetDataGenerator(
X_test,
batch_size=batch_size,
preprocess_func=binarize_images,
shuffle=True
),
steps=len(y_test) / batch_size
)
print('Test loss:', out[0])
print('Test angle error:', out[1])
In [5]:
num_images = 5
display_examples(
model,
X_test,
num_images=num_images,
preprocess_func=binarize_images,
)