HydroTrend is a numerical model that creates synthetic river discharge and sediment load time series as a function of climate trends and basin morphology.
In this example, we'll perform a centered parameter study, evaluating how changing two HydroTrend input parameters:
starting_mean_annual_temperature
andtotal_annual_precipitation
affects two output parameters
over a one-year run.
Before we start, make sure that you've installed Dakota, HydroTrend, and this package on your computer, using the instructions in the README file.
Start by importing the Dakota class.
In [ ]:
from dakotathon import Dakota
Create a Dakota instance to perform a centered parameter study with HydroTrend.
In [ ]:
d = Dakota(method='centered_parameter_study', plugin='hydrotrend')
Define the HydroTrend input variables to be used in the parameter study, as well as the initial point in parameter space, the step size, and the range of the variables.
In [ ]:
d.variables.descriptors = ['starting_mean_annual_temperature', 'total_annual_precipitation']
d.variables.initial_point = [15.0, 2.0]
d.method.steps_per_variable = [2, 5]
d.method.step_vector = [2.5, 0.2]
Define the HydroTrend outputs to be used in the parameter study, as well as the statistics to be calculated from them.
In [ ]:
d.responses.response_descriptors = ['Qs_median', 'Q_mean']
d.responses.response_files = ['HYDROASCII.QS', 'HYDROASCII.Q']
d.responses.response_statistics = ['median', 'mean']
HydroTrend requires a set of files to run. They're included in the data directory of this example. They can also be obtained directly from the HydroTrend GitHub repository. Set paths to these files with the following statements.
In [ ]:
import os
data_dir = os.path.join(os.getcwd(), 'data')
template_file = os.path.join(data_dir, 'hydrotrend.in.tmpl')
parameters_file = os.path.join(data_dir, 'parameters.yaml')
hypsometry_file = os.path.join(data_dir, 'HYDRO0.HYPS')
The template file provides the configuration file for HydroTrend, but with all parameter values replaced by variables in the form {parameter_name}
. The parameters file provides descriptions, ranges, and default values for all of the parameters represented in the template file. The hypsometry file describes the change in elevation along the river's course from source to sea.
From the template and parameters files, we can create an input file that HydroTrend can run. Included in the CSDMS Dakota package is a routine that replaces the variables in the template file with default values from the parameters file. Import this routine and use it to create a HydroTrend input file.
In [ ]:
from dakotathon.plugins.base import write_dflt_file
default_input_file = write_dflt_file(template_file, parameters_file, run_duration=365)
print default_input_file
Next, we must replace the default values for the variables for starting_mean_annual_temperature
and total_annual_precipitation
with variable names for Dakota to substitute into. The CSDMS Dakota package also includes a routine to do this. Import this routine and use it to create a Dakota template file.
In [ ]:
from dakotathon.plugins.base import write_dtmpl_file
dakota_template_file = write_dtmpl_file(template_file, default_input_file, d.variables.descriptors)
print dakota_template_file
Associate the Dakota template file and the hypsometry file with the Dakota instance.
In [ ]:
d.template_file = dakota_template_file
d.auxiliary_files = hypsometry_file
Call the setup method to create files needed by Dakota, then run the experiment.
In [ ]:
d.setup()
d.run()
Check the output; in particular, the dakota.dat file.
In [ ]:
%cat dakota.dat
I've included my output for comparison.
%eval_id interface starting_mean_annual_temperature total_annual_precipitation Qs_median Q_mean
1 CSDMS 15 2 4.907 101.3142499
2 CSDMS 10 2 2.435 101.2442425
3 CSDMS 12.5 2 3.524 101.3139131
4 CSDMS 17.5 2 6.608 101.3142499
5 CSDMS 20 2 8.67 101.3142499
6 CSDMS 15 1 3.783 49.13904014
7 CSDMS 15 1.2 4.061 59.54595737
8 CSDMS 15 1.4 4.263 69.96313812
9 CSDMS 15 1.6 4.518 80.40633878
10 CSDMS 15 1.8 4.567 90.85803505
11 CSDMS 15 2.2 5.13 111.7797497
12 CSDMS 15 2.4 5.324 122.2484547
13 CSDMS 15 2.6 5.474 132.7260839
14 CSDMS 15 2.8 5.626 143.206995
15 CSDMS 15 3 5.812 153.6976