In [54]:
import pandas as pd, json, numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
In [55]:
cluster=json.loads(file('../json/cluster.json','r').read())
citysave=json.loads(file('../json/citysave2.json','r').read())
pop_countries=json.loads(file('../json/pop_countries2.json','r').read())
pop_cities=json.loads(file('../json/pop_cities.json','r').read())
In [56]:
unicities={}
for i in cluster:
if cluster[i] not in unicities:
unicities[cluster[i]]=citysave[i]['country']
In [57]:
parent={}
In [58]:
for i in pop_cities:
#if a k times larger city is within x km
k=4
x=100
ct={}
for j in pop_cities[i]['nearby']:
if pop_cities[i]['nearby'][j]['people']>pop_cities[i]['pop']*k:
if pop_cities[i]['nearby'][j]['km']<x:
ct[pop_cities[i]['nearby'][j]['people']]=j
if ct:
cm=ct[max(ct.keys())]
parent[i]={cm:pop_cities[i]['nearby'][cm]['people']}
else:
parent[i]={i:pop_cities[i]['pop']}
Create new city list instead of airports with cross-allocating all flights to nearbys