Importamos la función parse_latex:
In [0]:
from sympy.parsing.latex import parse_latex
Solo nos queda pasar un string con la expresión LaTeX para que la función devuelva la expresión en código entendible por Sympy. NOTA: El string conviene pasarlo en formato "raw string literal"
Uso:
In [0]:
parse_latex(r'\frac{x^2}{\sqrt{y}}')
Out[0]:
In [0]:
import numpy as np
import pandas as pd
In [0]:
x = np.empty([3], dtype=object)
x
Out[0]:
In [0]:
x[0]=parse_latex(r'\frac{x^2}{\sqrt{y}}')
x
Out[0]:
In [0]:
y = list(np.array([parse_latex(r'x+y=6'),parse_latex(r'x-y=0')]))
y
Out[0]:
In [0]:
from sympy import solve, latex
latex(solve(list(y)))
Out[0]:
In [0]:
z = pd.DataFrame(np.array([parse_latex(r'x+y=6'),parse_latex(r'x-y=0')]))
z
Out[0]:
In [0]:
z.columns
Out[0]:
In [0]:
for i in z.index:
print(z.loc[i][0])
In [0]:
latex(solve(z.loc[i][0] for i in z.index))
Out[0]:
In [0]:
for i in z.index: print(z.loc[i][0])
In [0]:
v = pd.DataFrame(np.array([[parse_latex(r'x+y=6'),parse_latex(r'x-y=0')]]))
v
Out[0]:
In [0]:
for i in v.index:
print(list(v.iloc[i][:]))
print(solve(list(v.loc[i][:])))
In [0]:
In [0]:
z = pd.DataFrame(np.array([['x+y=6','x-y=0']]))
z
Out[0]:
In [0]:
z.apply(parse_latex)
In [0]:
#Código para exportar el notebook a markdown (Opcional)
!jupyter nbconvert --to=markdown Probando_parse_latex.ipynb