In [1]:
    
%pylab inline
from tfs.models import LeNet
net = LeNet()
    
    
In [2]:
    
netout = net.build()
print netout
    
    
In [3]:
    
print net
    
    
In [4]:
    
print net.print_shape()
    
    
In [5]:
    
print net.initializer
    
    
In [6]:
    
print net.losser
    
    
In [7]:
    
print net.optimizer
    
    
In [8]:
    
from tfs.dataset import Mnist
dataset = Mnist()
    
In [9]:
    
import numpy as np
idx = np.random.randint(0,60000) # we have 60000 images in the training dataset
img = dataset.train.data[idx,:,:,0]
lbl = dataset.train.labels[idx]
imshow(img,cmap='gray')
print 'index:',idx,'\t','label:',lbl
    
    
    
In [10]:
    
net.monitor
    
    Out[10]:
In [11]:
    
from tfs.core.monitor import *
net.monitor['default'].interval=20
net.monitor['var'] = LayerInputVarMonitor(net,interval=10)
    
In [12]:
    
net.fit(dataset,batch_size=200,n_epoch=1)
    
    
    Out[12]:
In [13]:
    
var_result = net.monitor['var'].results
    
In [14]:
    
import pandas as pd
var = pd.DataFrame(var_result,columns=[n.name for n in net.nodes])
    
In [15]:
    
var
    
    Out[15]:
In [ ]: