Using sci-analysis with pandas

Pandas is a python package that simplifies working with tabular or relational data. Because columns and rows of data in a pandas DataFrame are naturally array-like, using pandas with sci-analysis is the preferred way to use sci-analysis.

Let's create a pandas DataFrame to use for analysis:


In [1]:
import warnings
warnings.filterwarnings("ignore")
%matplotlib inline
import numpy as np
import scipy.stats as st
from sci_analysis import analyze

In [2]:
import pandas as pd
np.random.seed(987654321)
df = pd.DataFrame(
    {
        'ID'        : np.random.randint(10000, 50000, size=60).astype(str),
        'One'       : st.norm.rvs(0.0, 1, size=60),
        'Two'       : st.norm.rvs(0.0, 3, size=60),
        'Three'     : st.weibull_max.rvs(1.2, size=60),
        'Four'      : st.norm.rvs(0.0, 1, size=60),
        'Month'     : ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'] * 5,
        'Condition' : ['Group A', 'Group B', 'Group C', 'Group D'] * 15
    }
)
df


Out[2]:
ID One Two Three Four Month Condition
0 33815 -1.199973 -0.051015 -0.556609 -1.145177 Jan Group A
1 49378 -0.142682 3.522920 -1.424446 -0.880138 Feb Group B
2 21015 -1.746777 -7.415294 -1.804494 -0.487270 Mar Group C
3 15552 -0.437626 0.805884 -1.235840 0.416363 Apr Group D
4 38833 -1.205166 -0.105672 -1.683723 -0.151296 May Group A
5 13561 -0.610066 -1.842630 -1.280547 0.645674 Jun Group B
6 36967 -0.203453 2.323542 -1.326379 1.014516 Jul Group C
7 43379 0.085310 -2.053241 -0.503970 -1.349427 Aug Group D
8 36113 1.853726 -5.176661 -1.935414 0.513536 Sep Group A
9 18422 -0.614827 1.266392 -0.292610 -2.234853 Oct Group B
10 24986 0.091151 -5.721601 -0.330216 1.269432 Nov Group C
11 27743 0.367027 1.929861 -0.388752 -0.807231 Dec Group D
12 29620 0.337290 3.160379 -0.139480 0.917287 Jan Group A
13 16982 -2.403575 1.846666 -0.689486 -0.406160 Feb Group B
14 49184 -1.008465 -0.148862 -1.620799 0.707101 Mar Group C
15 35850 -0.352184 5.654610 -0.966809 0.927546 Apr Group D
16 47386 0.598030 -2.689915 -1.253860 0.570852 May Group A
17 19963 0.573027 1.372438 -0.690340 -0.798698 Jun Group B
18 25412 0.215652 4.065310 -2.168703 -1.567035 Jul Group C
19 38630 -0.436220 -2.193357 -0.821331 0.071891 Aug Group D
20 29330 0.209028 -0.720595 -1.019263 0.798486 Sep Group A
21 15612 0.406017 0.221715 -2.252922 -0.006731 Oct Group B
22 42431 -0.112333 3.377393 -1.023559 0.813721 Nov Group C
23 38265 0.341139 2.775356 -0.434224 3.408679 Dec Group D
24 38936 -1.435777 -3.183457 -2.417681 0.994073 Jan Group A
25 22402 0.719249 -2.281663 -0.419681 0.025585 Feb Group B
26 10490 1.022446 -0.884773 -0.962212 0.532781 Mar Group C
27 15452 1.463633 -1.052140 -0.316955 0.135338 Apr Group D
28 20401 1.375250 -3.150916 -0.842319 1.060090 May Group A
29 24927 -1.885277 -1.824083 -0.368665 -0.636261 Jun Group B
30 27535 0.379140 4.224249 -1.415238 1.940782 Jul Group C
31 28809 0.427183 9.419918 -0.730669 -1.345587 Aug Group D
32 42130 1.671549 3.501617 -2.043236 1.939640 Sep Group A
33 43074 0.933478 -0.262629 -0.523070 -0.551311 Oct Group B
34 37342 -0.986482 -1.544095 -1.795220 -0.523349 Nov Group C
35 16932 -0.121223 4.431819 -0.554931 -1.387899 Dec Group D
36 46045 -0.121785 3.704645 -0.555530 -0.610390 Jan Group A
37 13717 -1.303516 -3.525625 -0.268351 0.220075 Feb Group B
38 26979 0.167418 1.754883 -0.570240 -0.258519 Mar Group C
39 32178 0.379428 -2.980751 -1.046118 -1.266934 Apr Group D
40 22586 1.528444 3.847906 -0.564254 0.168995 May Group A
41 30676 0.579101 1.481665 -2.000617 -1.136057 Jun Group B
42 12145 -0.512085 -5.800311 -0.703269 1.309943 Jul Group C
43 33851 0.329299 -4.168787 -1.832158 2.626034 Aug Group D
44 20004 1.761672 6.218044 -0.903584 0.052300 Sep Group A
45 48903 -0.391426 3.600225 -0.390644 -1.282138 Oct Group B
46 11760 -0.153558 0.022388 -0.882584 0.461477 Nov Group C
47 21061 -0.765411 -1.856080 -0.967070 -0.169594 Dec Group D
48 18232 -1.983058 3.544743 -1.246127 1.408816 Jan Group A
49 29927 -0.017905 -6.803385 -0.043450 -0.192027 Feb Group B
50 30740 -0.772090 0.826426 -0.875306 0.074382 Mar Group C
51 41741 -1.017919 4.670395 -0.080428 0.408054 Apr Group D
52 45287 1.721927 7.581574 -0.395787 0.114241 May Group A
53 39581 -0.860012 3.638375 -0.530987 0.019394 Jun Group B
54 19179 0.441536 3.921498 -0.001505 0.373191 Jul Group C
55 17116 0.604572 2.716440 -0.580509 -0.157461 Aug Group D
56 34913 1.635415 2.587376 -0.463056 -0.189674 Sep Group A
57 13794 0.623878 -5.834247 -1.710010 -0.232304 Oct Group B
58 28453 -0.349846 -0.703319 -1.094846 -0.238145 Nov Group C
59 25158 0.097128 -3.303646 -0.508852 0.112469 Dec Group D

This creates a table (pandas DataFrame object) with 6 columns and an index which is the row id. The following command can be used to analyze the distribution of the column titled One:


In [3]:
analyze(
    df['One'], 
    name='Column One', 
    title='Distribution from pandas'
)



Statistics
----------

n         =  60
Mean      = -0.0035
Std Dev   =  0.9733
Std Error =  0.1257
Skewness  = -0.1472
Kurtosis  = -0.2412
Maximum   =  1.8537
75%       =  0.5745
50%       =  0.0882
25%       = -0.6113
Minimum   = -2.4036
IQR       =  1.1858
Range     =  4.2573


Shapiro-Wilk test for normality
-------------------------------

alpha   =  0.0500
W value =  0.9804
p value =  0.4460

H0: Data is normally distributed

Anywhere you use a python list or numpy Array in sci-analysis, you can use a column or row of a pandas DataFrame (known in pandas terms as a Series). This is because a pandas Series has much of the same behavior as a numpy Array, causing sci-analysis to handle a pandas Series as if it were a numpy Array.

By passing two array-like arguments to the analyze() function, the correlation can be determined between the two array-like arguments. The following command can be used to analyze the correlation between columns One and Three:


In [4]:
analyze(
    df['One'], 
    df['Three'], 
    xname='Column One', 
    yname='Column Three', 
    title='Bivariate Analysis between Column One and Column Three'
)



Linear Regression
-----------------

n         =  60
Slope     =  0.0281
Intercept = -0.9407
r         =  0.0449
r^2       =  0.0020
Std Err   =  0.0820
p value   =  0.7332



Spearman Correlation Coefficient
--------------------------------

alpha   =  0.0500
r value =  0.0316
p value =  0.8105

H0: There is no significant relationship between predictor and response

Since there isn't a correlation between columns One and Three, it might be useful to see where most of the data is concentrated. This can be done by adding the argument contours=True and turning off the best fit line with fit=False. For example:


In [5]:
analyze(
    df['One'], 
    df['Three'], 
    xname='Column One', 
    yname='Column Three',
    contours=True,
    fit=False,
    title='Bivariate Analysis between Column One and Column Three'
)



Linear Regression
-----------------

n         =  60
Slope     =  0.0281
Intercept = -0.9407
r         =  0.0449
r^2       =  0.0020
Std Err   =  0.0820
p value   =  0.7332



Spearman Correlation Coefficient
--------------------------------

alpha   =  0.0500
r value =  0.0316
p value =  0.8105

H0: There is no significant relationship between predictor and response

With a few point below -2.0, it might be useful to know which data point they are. This can be done by passing the ID column to the labels argument and then selecting which labels to highlight with the highlight argument:


In [6]:
analyze(
    df['One'], 
    df['Three'], 
    labels=df['ID'],
    highlight=df[df['Three'] < -2.0]['ID'],
    fit=False,
    xname='Column One', 
    yname='Column Three', 
    title='Bivariate Analysis between Column One and Column Three'
)



Linear Regression
-----------------

n         =  60
Slope     =  0.0281
Intercept = -0.9407
r         =  0.0449
r^2       =  0.0020
Std Err   =  0.0820
p value   =  0.7332



Spearman Correlation Coefficient
--------------------------------

alpha   =  0.0500
r value =  0.0316
p value =  0.8105

H0: There is no significant relationship between predictor and response

To check whether an individual Condition correlates between Column One and Column Three, the same analysis can be done, but this time by passing the Condition column to the groups argument. For example:


In [7]:
analyze(
    df['One'], 
    df['Three'],
    xname='Column One',
    yname='Column Three',
    groups=df['Condition'],
    title='Bivariate Analysis between Column One and Column Three'
)



Linear Regression
-----------------

n             Slope         Intercept     r^2           Std Err       p value       Group         
--------------------------------------------------------------------------------------------------
15             0.1113       -1.1181        0.0487        0.1364        0.4293       Group A       
15            -0.2586       -0.9348        0.1392        0.1784        0.1708       Group B       
15             0.3688       -1.0182        0.1869        0.2134        0.1076       Group C       
15             0.0611       -0.7352        0.0075        0.1952        0.7591       Group D       


Spearman Correlation Coefficient
--------------------------------

n             r value       p value       Group         
--------------------------------------------------------
15             0.1357        0.6296       Group A       
15            -0.3643        0.1819       Group B       
15             0.3714        0.1728       Group C       
15             0.1786        0.5243       Group D       

The borders of the graph have boxplots for all the data points on the x-axis and y-axis, regardless of which group they belong to. The borders can be removed by adding the argument boxplot_borders=False.

According to the Spearman Correlation, there is no significant correlation among the groups. Group B is the only group with a negative slope, but it can be difficult to see the data points for Group B with so many colors on the graph. The Group B data points can be highlighted by using the argument highlight=['Group B']. In fact, any number of groups can be highlighted by passing a list of the group names using the highlight argument.


In [8]:
analyze(
    df['One'], 
    df['Three'],
    xname='Column One',
    yname='Column Three',
    groups=df['Condition'],
    boxplot_borders=False,
    highlight=['Group B'],
    title='Bivariate Analysis between Column One and Column Three'
)



Linear Regression
-----------------

n             Slope         Intercept     r^2           Std Err       p value       Group         
--------------------------------------------------------------------------------------------------
15             0.1113       -1.1181        0.0487        0.1364        0.4293       Group A       
15            -0.2586       -0.9348        0.1392        0.1784        0.1708       Group B       
15             0.3688       -1.0182        0.1869        0.2134        0.1076       Group C       
15             0.0611       -0.7352        0.0075        0.1952        0.7591       Group D       


Spearman Correlation Coefficient
--------------------------------

n             r value       p value       Group         
--------------------------------------------------------
15             0.1357        0.6296       Group A       
15            -0.3643        0.1819       Group B       
15             0.3714        0.1728       Group C       
15             0.1786        0.5243       Group D       

Performing a location test on data in a pandas DataFrame requires some explanation. A location test can be performed with stacked or unstacked data. One method will be easier than the other depending on how the data to be analyzed is stored. In the example DataFrame used so far, to perform a location test between the groups in the Condition column, the stacked method will be easier to use.

Let's start with an example. The following code will perform a location test using each of the four values in the Condition column:


In [9]:
analyze(
    df['Two'], 
    groups=df['Condition'],
    categories='Condition',
    name='Column Two',
    title='Oneway from pandas'
)



Overall Statistics
------------------

Number of Groups =  4
Total            =  60
Grand Mean       =  0.4456
Pooled Std Dev   =  3.6841
Grand Median     =  0.5138


Group Statistics
----------------

n             Mean          Std Dev       Min           Median        Max           Group         
--------------------------------------------------------------------------------------------------
15             1.2712        3.7471       -5.1767        2.5874        7.5816       Group A       
15            -0.3616        3.2792       -6.8034        0.2217        3.6384       Group B       
15            -0.1135        3.7338       -7.4153        0.0224        4.2242       Group C       
15             0.9864        3.9441       -4.1688        0.8059        9.4199       Group D       


Bartlett Test
-------------

alpha   =  0.0500
T value =  0.4868
p value =  0.9218

H0: Variances are equal



Oneway ANOVA
------------

alpha   =  0.0500
f value =  0.7140
p value =  0.5477

H0: Group means are matched

From the graph, there are four groups: Group A, Group B, Group C and Group D in Column Two. The analysis shows that the variances are equal and there is no significant difference in the means. Noting the tests that are being performed, the Bartlett test is being used to check for equal variance because all four groups are normally distributed, and the Oneway ANOVA is being used to test if all means are equal because all four groups are normally distributed and the variances are equal. However, if not all the groups are normally distributed, the Levene Test will be used to check for equal variance instead of the Bartlett Test. Also, if the groups are not normally distributed or the variances are not equal, the Kruskal-Wallis test will be used instead of the Oneway ANOVA.

If instead the four columns One, Two, Three and Four are to be analyzed, the easier way to perform the analysis is with the unstacked method. The following code will perform a location test of the four columns:


In [10]:
analyze(
    [df['One'], df['Two'], df['Three'], df['Four']], 
    groups=['One', 'Two', 'Three', 'Four'],
    categories='Columns',
    title='Unstacked Oneway'
)



Overall Statistics
------------------

Number of Groups =  4
Total            =  240
Grand Mean       = -0.0995
Pooled Std Dev   =  1.9859
Grand Median     =  0.0752


Group Statistics
----------------

n             Mean          Std Dev       Min           Median        Max           Group         
--------------------------------------------------------------------------------------------------
60             0.1007        1.0294       -2.2349        0.0621        3.4087       Four          
60            -0.0035        0.9815       -2.4036        0.0882        1.8537       One           
60            -0.9408        0.6133       -2.4177       -0.8318       -0.0015       Three         
60             0.4456        3.6572       -7.4153        0.5138        9.4199       Two           


Levene Test
-----------

alpha   =  0.0500
W value =  64.7684
p value =  0.0000

HA: Variances are not equal



Kruskal-Wallis
--------------

alpha   =  0.0500
h value =  33.8441
p value =  0.0000

HA: Group means are not matched

To perform a location test using the unstacked method, the columns to be analyzed are passed in a list or tuple, and the groups argument needs to be a list or tuple of the group names. One thing to note is that the groups argument was used to explicitly define the group names. This will only work if the group names and order are known in advance. If they are unknown, a dictionary comprehension can be used instead of a list comprehension to to get the group names along with the data:


In [11]:
analyze(
    {'One': df['One'], 'Two': df['Two'], 'Three': df['Three'], 'Four': df['Four']}, 
    categories='Columns',
    title='Unstacked Oneway Using a Dictionary'
)



Overall Statistics
------------------

Number of Groups =  4
Total            =  240
Grand Mean       = -0.0995
Pooled Std Dev   =  1.9859
Grand Median     =  0.0752


Group Statistics
----------------

n             Mean          Std Dev       Min           Median        Max           Group         
--------------------------------------------------------------------------------------------------
60             0.1007        1.0294       -2.2349        0.0621        3.4087       Four          
60            -0.0035        0.9815       -2.4036        0.0882        1.8537       One           
60            -0.9408        0.6133       -2.4177       -0.8318       -0.0015       Three         
60             0.4456        3.6572       -7.4153        0.5138        9.4199       Two           


Levene Test
-----------

alpha   =  0.0500
W value =  64.7684
p value =  0.0000

HA: Variances are not equal



Kruskal-Wallis
--------------

alpha   =  0.0500
h value =  33.8441
p value =  0.0000

HA: Group means are not matched

The output will be identical to the previous example. The analysis also shows that the variances are not equal, and the means are not matched. Also, because the data in column Three is not normally distributed, the Levene Test is used to test for equal variance instead of the Bartlett Test, and the Kruskal-Wallis Test is used instead of the Oneway ANOVA.

With pandas, it's possible to perform advanced aggregation and filtering functions using the GroupBy object's apply() method. Since the sample sizes were small for each month in the above examples, it might be helpful to group the data by annual quarters instead. First, let's create a function that adds a column called Quarter to the DataFrame where the value is either Q1, Q2, Q3 or Q4 depending on the month.


In [12]:
def set_quarter(data):
    month = data['Month']
    if month.all() in ('Jan', 'Feb', 'Mar'):
        quarter = 'Q1'
    elif month.all() in ('Apr', 'May', 'Jun'):
        quarter = 'Q2'
    elif month.all() in ('Jul', 'Aug', 'Sep'):
        quarter = 'Q3'
    elif month.all() in ('Oct', 'Nov', 'Dec'):
        quarter = 'Q4'
    else:
        quarter = 'Unknown'
    data.loc[:, 'Quarter'] = quarter
    return data

This function will take a GroupBy object called data, where data's DataFrame object was grouped by month, and set the variable quarter based off the month. Then, a new column called Quarter is added to data where the value of each row is equal to quarter. Finally, the resulting DataFrame object is returned.

Using the new function is simple. The same techniques from previous examples are used, but this time, a new DataFrame object called df2 is created by first grouping by the Month column then calling the apply() method which will run the set_quarter() function.


In [13]:
quarters = ('Q1', 'Q2', 'Q3', 'Q4')
df2 = df.groupby(df['Month']).apply(set_quarter)
data = {quarter: data['Two'] for quarter, data in df2.groupby(df2['Quarter'])}
analyze(
    [data[quarter] for quarter in quarters],
    groups=quarters,
    categories='Quarters',
    name='Column Two',
    title='Oneway of Annual Quarters'
)



Overall Statistics
------------------

Number of Groups =  4
Total            =  60
Grand Mean       =  0.4456
Pooled Std Dev   =  3.6815
Grand Median     =  0.4141


Group Statistics
----------------

n             Mean          Std Dev       Min           Median        Max           Group         
--------------------------------------------------------------------------------------------------
15            -0.3956        3.6190       -7.4153       -0.0510        3.7046       Q1            
15             1.0271        3.4028       -3.1509        0.8059        7.5816       Q2            
15             1.2577        4.4120       -5.8003        2.5874        9.4199       Q3            
15            -0.1067        3.1736       -5.8342        0.0224        4.4318       Q4            


Bartlett Test
-------------

alpha   =  0.0500
T value =  1.7209
p value =  0.6323

H0: Variances are equal



Oneway ANOVA
------------

alpha   =  0.0500
f value =  0.7416
p value =  0.5318

H0: Group means are matched