In [ ]:
import ibis
import os
hdfs_port = os.environ.get('IBIS_WEBHDFS_PORT', 50070)
hdfs = ibis.hdfs_connect(host='quickstart.cloudera', port=hdfs_port)
con = ibis.impala.connect(host='quickstart.cloudera', database='ibis_testing',
hdfs_client=hdfs)
ibis.options.interactive = True
The Ibis type system is pretty basic and will get better (and more documented over time). It maps directly onto the current Impala type system
int8int16int32int64booleanfloatdoublestringtimestampdecimal($precision, $scale)These type names can be used to cast from one type to another
In [ ]:
table = con.table('functional_alltypes')
table.string_col.cast('double').sum()
In [ ]:
table.string_col.cast('decimal(12,2)').sum()
In [ ]:
expr = (table.string_col
.case()
.when('4', 'fee')
.when('7', 'fi')
.when('1', 'fo')
.when('0', 'fum')
.else_(table.string_col)
.end()
.name('new_strings'))
expr.value_counts()
If the else_ default condition is not provided, any values not matching one of the conditions will be NULL.
In [ ]:
expr = (table.string_col
.case()
.when('4', 'fee')
.when('7', 'fi')
.end()
.name('with_nulls'))
expr.value_counts()
To test for an arbitrary series of boolean conditions, use the case API method and pass any boolean expressions potentially involving columns of the table:
In [ ]:
expr = (ibis.case()
.when(table.int_col > 5, table.bigint_col * 2)
.when(table.int_col > 2, table.bigint_col)
.else_(table.int_col)
.end())
table['id', 'int_col', 'bigint_col', expr.name('case_result')].limit(20)
Simple ternary-cases (like the Python X if COND else Y) can be written using the ifelse function:
In [ ]:
expr = ((table.int_col > 5)
.ifelse(table.bigint_col / 2, table.bigint_col * 2)
.name('ifelse_result'))
table['int_col', 'bigint_col', expr].limit(10)
In [ ]:
bool_clause = table.string_col.notin(['1', '4', '7'])
table[bool_clause].string_col.value_counts()
You can also check for membership in an array. Here is an example of filtering based on the top 3 (ignoring ties) most frequently-occurring values in the string_col column of alltypes:
In [ ]:
top_strings = table.string_col.value_counts().limit(3).string_col
top_filter = table.string_col.isin(top_strings)
expr = table[top_filter]
expr.count()
This is a common enough operation that we provide a special analytical filter function topk:
In [ ]:
table[table.string_col.topk(3)].count()
Cool, huh? More on topk later.
In [ ]:
expr = (table.string_col
.case()
.when('4', 'fee')
.when('7', 'fi')
.when('1', 'fo')
.end()
.name('new_strings'))
expr.isnull().value_counts()
Functions like isnull can be combined with case expressions or functions like ifelse to replace null values with some other value. ifelse here will use the first value supplied for any True value and the second value for any False value. Either value can be a scalar or array.
In [ ]:
expr2 = expr.isnull().ifelse('was null', expr).name('strings')
expr2.value_counts()
In [ ]:
table['int_col', 'bigint_col'].distinct()
In [ ]:
table.string_col.distinct()
This can be combined with count to form a reduction metric:
In [ ]:
metric = (table.bigint_col
.distinct().count()
.name('unique_bigints'))
This is common enough to have a shortcut nunique:
In [ ]:
table.string_col.nunique()
In [ ]:
nation = con.table('tpch_nation')
nation.limit(5)
At the moment, basic substring operations (substr, with conveniences left and right) and Python-like APIs such as lower and upper (for case normalization) are supported. So you could count first letter occurrences in a string column like so:
In [ ]:
expr = nation.n_name.lower().left(1).name('first_letter')
expr.value_counts().sort_by(('count', False))
For fuzzy and regex filtering/searching, you can use one of the following
like, works as the SQL LIKE keywordrlike, like re.search or SQL RLIKEcontains, like x in str_value in Python
In [ ]:
nation[nation.n_name.like('%GE%')]
In [ ]:
nation[nation.n_name.lower().rlike('.*ge.*')]
In [ ]:
nation[nation.n_name.lower().contains('ge')]
In [ ]:
table = con.table('functional_alltypes')
table[table.timestamp_col, table.timestamp_col.minute().name('minute')].limit(10)
Somewhat more comprehensively
In [ ]:
def get_field(f):
return getattr(table.timestamp_col, f)().name(f)
fields = ['year', 'month', 'day', 'hour', 'minute', 'second', 'millisecond']
projection = [table.timestamp_col] + [get_field(x) for x in fields]
table[projection].limit(10)
For timestamp arithmetic and comparisons, check out functions in the top level ibis namespace. This include things like day and second, but also the ibis.timestamp function:
In [ ]:
table[table.timestamp_col.min(), table.timestamp_col.max(), table.count().name('nrows')]
In [ ]:
table[table.timestamp_col < '2010-01-01'].count()
In [ ]:
table[table.timestamp_col <
(ibis.timestamp('2010-01-01') + ibis.interval(months=3))].count()
In [ ]:
expr = (table.timestamp_col + ibis.interval(days=1) + ibis.interval(hours=4)).name('offset')
table[table.timestamp_col, expr, ibis.now().name('current_time')].limit(10)