Atenção Leia antes o notebook "install_tensorflow"! Antes de rodar os comandos abaixo, se estiver usando o Jupyter dentro do Anaconda em sua máquina local, saia do Jupyter, e digite: pip install keras Depois, abra o jupyter novamente e rode os comandos abaixo.
In [1]:
install.packages("keras", repos='http://cran.us.r-project.org')
In [2]:
library(keras)
install_keras()
In [3]:
mnist <- dataset_mnist()
x_train <- mnist$train$x
y_train <- mnist$train$y
x_test <- mnist$test$x
y_test <- mnist$test$y
In [4]:
# reshape
x_train <- array_reshape(x_train, c(nrow(x_train), 784))
x_test <- array_reshape(x_test, c(nrow(x_test), 784))
# rescale
x_train <- x_train / 255
x_test <- x_test / 255
In [5]:
y_train <- to_categorical(y_train, 10)
y_test <- to_categorical(y_test, 10)
In [6]:
model <- keras_model_sequential()
model %>%
layer_dense(units = 256, activation = 'relu', input_shape = c(784)) %>%
layer_dropout(rate = 0.4) %>%
layer_dense(units = 128, activation = 'relu') %>%
layer_dropout(rate = 0.3) %>%
layer_dense(units = 10, activation = 'softmax')
In [7]:
summary(model)
In [8]:
model %>% compile(
loss = 'categorical_crossentropy',
optimizer = optimizer_rmsprop(),
metrics = c('accuracy')
)
In [9]:
history <- model %>% fit(
x_train, y_train,
epochs = 30, batch_size = 128,
validation_split = 0.2
)
In [10]:
plot(history)
In [ ]: