In [1]:
df <- read.csv('desemprego.csv')
In [2]:
str(df)
In [3]:
summary(df)
In [4]:
head(df)
In [5]:
tail(df)
In [7]:
df2 <- read.csv('dataset-nao-convencional.csv',dec = ',', sep = ";")
In [11]:
str(df2)
In [8]:
head(df2)
In [9]:
df3 <- read.csv('dataset-nao-convencional.csv',dec = ',', sep = ";",
colClasses= c('character','integer','numeric'))
In [10]:
str(df3)
In [12]:
df4 <- read.csv('datas.csv',colClasses=c('Date','integer', 'numeric'))
In [13]:
print(as.numeric(format(df4$Nascimento, "%m")))
In [14]:
df6 <- read.csv('datas-horas.csv', colClasses = c('character', 'numeric', 'numeric'))
str(df6)
In [15]:
df6$Nascimento <- strptime(df6$Nascimento,format='%d-%m-%Y %H:%M:%S')
str(df6)
In [16]:
valores <- c(1.0,5.2,,6.7,3.2,4.1)
In [18]:
valores <- c(1.0,5.2,NA,6.7,3.2,4.1)
valores
In [20]:
valores <- c(1.0,5.2,NaN,6.7,3.2,4.1)
valores
mean(valores)
In [21]:
valores <- c(1.0,5.2,NULL,6.7,3.2,4.1)
valores
mean(valores)
length(valores)
In [23]:
valores <- c(1.0,5.2,NA,6.7,3.2,4.1)
is.na(valores)
is.na(valores[3])
In [24]:
valores <- c(1.0,5.2,NaN,6.7,3.2,4.1)
is.na(valores)
In [26]:
# Inf é numérico!
valores <- c(1.0,5.2,Inf,6.7,3.2,4.1)
is.na(valores)
is.infinite(valores)
In [27]:
valores <- c(1.0,5.2,NULL,6.7,3.2,4.1)
is.na(valores)
In [28]:
library(tidyr)
In [29]:
library(dplyr)
In [ ]: