In this document an Energy Balance Model (EBM) is set up with the energy tranport parameterized through the the budyko type parameterization term (instead of the default diffusion term), which characterizes the local energy flux through the difference between local temperature and global mean temperature.
where $T(\varphi)$ is the surface temperature across the latitude $\varphi$, $\bar{T}$ the global mean temperature and $H(\varphi)$ is the transport of energy in an Energy Budget noted as:
In [1]:
# import header
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
import climlab
from climlab import constants as const
from climlab.domain.field import global_mean
An EBM model instance is created through
In [2]:
# model creation
ebm_budyko= climlab.EBM()
The model is set up by default with a meridional diffusion term.
In [3]:
# print model states and suprocesses
print ebm_budyko
The creation of a subprocess needs some information from the model, especially on which model state the subprocess should be defined on.
In [4]:
# create Budyko subprocess
budyko_transp = climlab.dynamics.BudykoTransport(b=3.81,
state=ebm_budyko.state,
**ebm_budyko.param)
Note that the model's whole state dictionary is given as input to the subprocess. In case only the temperature field ebm_budyko.state['Ts']
is given, a new state dictionary would be created which holds the surface temperature with the key 'default'
. That raises an error as the budyko transport process refers the temperature with key 'Ts'
.
Now the new transport subprocess has to be merged into the model. The diffusion
subprocess has to be removed.
In [5]:
# add the new transport subprocess
ebm_budyko.add_subprocess('budyko_transport',budyko_transp)
# remove the old diffusion subprocess
ebm_budyko.remove_subprocess('diffusion')
In [6]:
print ebm_budyko
In [7]:
# integrate model for a single timestep
ebm_budyko.step_forward()
In [8]:
# creating plot figure
fig = plt.figure(figsize=(15,10))
# Temperature plot
ax1 = fig.add_subplot(221)
ax1.plot(ebm_budyko.lat,ebm_budyko.Ts)
ax1.set_xticks([-90,-60,-30,0,30,60,90])
ax1.set_xlim([-90,90])
ax1.set_xlabel('latitude')
ax1.set_ylabel('surface temperature (degC)', fontsize=12)
ax1.grid()
# Albedo plot
ax2 = fig.add_subplot(223, sharex = ax1)
ax2.plot(ebm_budyko.lat,ebm_budyko.albedo)
ax2.set_ylabel('albedo', fontsize=12)
ax2.set_ylim([0,1])
ax2.grid()
# Net Radiation plot
ax3 = fig.add_subplot(222, sharex = ax1)
ax3.plot(ebm_budyko.lat, ebm_budyko.OLR, label='OLR',
color='cyan')
ax3.plot(ebm_budyko.lat, ebm_budyko.ASR, label='ASR',
color='magenta')
ax3.plot(ebm_budyko.lat, ebm_budyko.ASR-ebm_budyko.OLR,
label='net radiation',
color='red')
ax3.set_ylabel('radiation (W/m$^2$)', fontsize=12)
ax3.legend(loc='best')
ax3.grid()
# Energy Balance plot
net_rad = ebm_budyko.net_radiation
transport = ebm_budyko.subprocess['budyko_transport'].heating_rate['Ts']
ax4 = fig.add_subplot(224, sharex = ax1)
ax4.plot(ebm_budyko.lat, net_rad, label='net radiation',
color='red')
ax4.plot(ebm_budyko.lat, transport, label='heat transport',
color='blue')
ax4.plot(ebm_budyko.lat, net_rad+transport, label='balance',
color='black')
ax4.set_ylabel('energy (W/m$^2$)', fontsize=12)
ax4.legend(loc='best')
ax4.grid()
plt.show()
In [9]:
# integrate model until solution converges
ebm_budyko.integrate_converge()
In [10]:
# creating plot figure
fig = plt.figure(figsize=(15,10))
# Temperature plot
ax1 = fig.add_subplot(221)
ax1.plot(ebm_budyko.lat,ebm_budyko.Ts)
ax1.set_xticks([-90,-60,-30,0,30,60,90])
ax1.set_xlim([-90,90])
ax1.set_xlabel('latitude')
ax1.set_ylabel('surface temperature (degC)', fontsize=12)
ax1.grid()
# Albedo plot
ax2 = fig.add_subplot(223, sharex = ax1)
ax2.plot(ebm_budyko.lat,ebm_budyko.albedo)
ax2.set_ylabel('albedo', fontsize=12)
ax2.set_ylim([0,1])
ax2.grid()
# Net Radiation plot
ax3 = fig.add_subplot(222, sharex = ax1)
ax3.plot(ebm_budyko.lat, ebm_budyko.OLR, label='OLR',
color='cyan')
ax3.plot(ebm_budyko.lat, ebm_budyko.ASR, label='ASR',
color='magenta')
ax3.plot(ebm_budyko.lat, ebm_budyko.ASR-ebm_budyko.OLR,
label='net radiation',
color='red')
ax3.set_ylabel('radiation (W/m$^2$)', fontsize=12)
ax3.legend(loc='best')
ax3.grid()
# Energy Balance plot
net_rad = ebm_budyko.net_radiation
transport = ebm_budyko.subprocess['budyko_transport'].heating_rate['Ts']
ax4 = fig.add_subplot(224, sharex = ax1)
ax4.plot(ebm_budyko.lat, net_rad, label='net radiation',
color='red')
ax4.plot(ebm_budyko.lat, transport, label='heat transport',
color='blue')
ax4.plot(ebm_budyko.lat, net_rad+transport, label='balance',
color='black')
ax4.set_ylabel('energy (W/m$^2$)', fontsize=12)
ax4.legend(loc='best')
ax4.grid()
plt.show()
In [11]:
print 'The global mean temperature is %s degC with a model ice edge at %s deg.' \
%(np.round(global_mean(ebm_budyko.Ts),2), np.max(ebm_budyko.icelat))