Pandas Crosstab Explained

Notebook that accompanies article on Practical Business Python


In [1]:
import pandas as pd
import seaborn as sns

In [2]:
%matplotlib inline

Import the data


In [3]:
# Define the headers since the data does not have any
headers = ["symboling", "normalized_losses", "make", "fuel_type", "aspiration",
           "num_doors", "body_style", "drive_wheels", "engine_location",
           "wheel_base", "length", "width", "height", "curb_weight",
           "engine_type", "num_cylinders", "engine_size", "fuel_system",
           "bore", "stroke", "compression_ratio", "horsepower", "peak_rpm",
           "city_mpg", "highway_mpg", "price"]

In [4]:
# Read in the CSV file and convert "?" to NaN
df_raw = pd.read_csv("http://mlr.cs.umass.edu/ml/machine-learning-databases/autos/imports-85.data",
                  header=None, names=headers, na_values="?" )
df_raw.head()


Out[4]:
symboling normalized_losses make fuel_type aspiration num_doors body_style drive_wheels engine_location wheel_base ... engine_size fuel_system bore stroke compression_ratio horsepower peak_rpm city_mpg highway_mpg price
0 3 NaN alfa-romero gas std two convertible rwd front 88.6 ... 130 mpfi 3.47 2.68 9.0 111.0 5000.0 21 27 13495.0
1 3 NaN alfa-romero gas std two convertible rwd front 88.6 ... 130 mpfi 3.47 2.68 9.0 111.0 5000.0 21 27 16500.0
2 1 NaN alfa-romero gas std two hatchback rwd front 94.5 ... 152 mpfi 2.68 3.47 9.0 154.0 5000.0 19 26 16500.0
3 2 164.0 audi gas std four sedan fwd front 99.8 ... 109 mpfi 3.19 3.40 10.0 102.0 5500.0 24 30 13950.0
4 2 164.0 audi gas std four sedan 4wd front 99.4 ... 136 mpfi 3.19 3.40 8.0 115.0 5500.0 18 22 17450.0

5 rows × 26 columns


In [5]:
# Take a quick look at all the values in the data
df_raw.describe()


Out[5]:
symboling normalized_losses wheel_base length width height curb_weight engine_size bore stroke compression_ratio horsepower peak_rpm city_mpg highway_mpg price
count 205.000000 164.000000 205.000000 205.000000 205.000000 205.000000 205.000000 205.000000 201.000000 201.000000 205.000000 203.000000 203.000000 205.000000 205.000000 201.000000
mean 0.834146 122.000000 98.756585 174.049268 65.907805 53.724878 2555.565854 126.907317 3.329751 3.255423 10.142537 104.256158 5125.369458 25.219512 30.751220 13207.129353
std 1.245307 35.442168 6.021776 12.337289 2.145204 2.443522 520.680204 41.642693 0.273539 0.316717 3.972040 39.714369 479.334560 6.542142 6.886443 7947.066342
min -2.000000 65.000000 86.600000 141.100000 60.300000 47.800000 1488.000000 61.000000 2.540000 2.070000 7.000000 48.000000 4150.000000 13.000000 16.000000 5118.000000
25% 0.000000 94.000000 94.500000 166.300000 64.100000 52.000000 2145.000000 97.000000 3.150000 3.110000 8.600000 70.000000 4800.000000 19.000000 25.000000 7775.000000
50% 1.000000 115.000000 97.000000 173.200000 65.500000 54.100000 2414.000000 120.000000 3.310000 3.290000 9.000000 95.000000 5200.000000 24.000000 30.000000 10295.000000
75% 2.000000 150.000000 102.400000 183.100000 66.900000 55.500000 2935.000000 141.000000 3.590000 3.410000 9.400000 116.000000 5500.000000 30.000000 34.000000 16500.000000
max 3.000000 256.000000 120.900000 208.100000 72.300000 59.800000 4066.000000 326.000000 3.940000 4.170000 23.000000 288.000000 6600.000000 49.000000 54.000000 45400.000000

In [6]:
# Filter out the top 8 manufacturers
models = ["toyota","nissan","mazda", "honda", "mitsubishi", "subaru", "volkswagen", "volvo"]

In [7]:
df = df_raw[df_raw.make.isin(models)].copy()

In [8]:
df.head()


Out[8]:
symboling normalized_losses make fuel_type aspiration num_doors body_style drive_wheels engine_location wheel_base ... engine_size fuel_system bore stroke compression_ratio horsepower peak_rpm city_mpg highway_mpg price
30 2 137.0 honda gas std two hatchback fwd front 86.6 ... 92 1bbl 2.91 3.41 9.6 58.0 4800.0 49 54 6479.0
31 2 137.0 honda gas std two hatchback fwd front 86.6 ... 92 1bbl 2.91 3.41 9.2 76.0 6000.0 31 38 6855.0
32 1 101.0 honda gas std two hatchback fwd front 93.7 ... 79 1bbl 2.91 3.07 10.1 60.0 5500.0 38 42 5399.0
33 1 101.0 honda gas std two hatchback fwd front 93.7 ... 92 1bbl 2.91 3.41 9.2 76.0 6000.0 30 34 6529.0
34 1 101.0 honda gas std two hatchback fwd front 93.7 ... 92 1bbl 2.91 3.41 9.2 76.0 6000.0 30 34 7129.0

5 rows × 26 columns


In [9]:
### Basic Crosstab functions

In [10]:
# Create a simple crosstab that counts the number of occurences of each combination
pd.crosstab(df.make, df.num_doors)


Out[10]:
num_doors four two
make
honda 5 8
mazda 7 9
mitsubishi 4 9
nissan 9 9
subaru 9 3
toyota 18 14
volkswagen 8 4
volvo 11 0

In [11]:
# Add a subtotal
pd.crosstab(df.make, df.num_doors, margins=True, margins_name="Total")


Out[11]:
num_doors four two Total
make
honda 5 8 13
mazda 7 9 16
mitsubishi 4 9 13
nissan 9 9 18
subaru 9 3 12
toyota 18 14 32
volkswagen 8 4 12
volvo 11 0 11
Total 71 56 127

In [12]:
# Another example, this time of make and body_style
pd.crosstab(df.make, df.body_style)


Out[12]:
body_style convertible hardtop hatchback sedan wagon
make
honda 0 0 7 5 1
mazda 0 0 10 7 0
mitsubishi 0 0 9 4 0
nissan 0 1 5 9 3
subaru 0 0 3 5 4
toyota 1 3 14 10 4
volkswagen 1 0 1 9 1
volvo 0 0 0 8 3

In [13]:
# Add custom names for the rows and columns?
pd.crosstab(df.make, df.body_style, rownames=['Auto Manufacturer'], colnames=['Body Style'])


Out[13]:
Body Style convertible hardtop hatchback sedan wagon
Auto Manufacturer
honda 0 0 7 5 1
mazda 0 0 10 7 0
mitsubishi 0 0 9 4 0
nissan 0 1 5 9 3
subaru 0 0 3 5 4
toyota 1 3 14 10 4
volkswagen 1 0 1 9 1
volvo 0 0 0 8 3

Normalizing Results


In [14]:
# Convert the occurrences to percentages
pd.crosstab(df.make, df.body_style, normalize=True)


Out[14]:
body_style convertible hardtop hatchback sedan wagon
make
honda 0.000000 0.000000 0.054688 0.039062 0.007812
mazda 0.000000 0.000000 0.078125 0.054688 0.000000
mitsubishi 0.000000 0.000000 0.070312 0.031250 0.000000
nissan 0.000000 0.007812 0.039062 0.070312 0.023438
subaru 0.000000 0.000000 0.023438 0.039062 0.031250
toyota 0.007812 0.023438 0.109375 0.078125 0.031250
volkswagen 0.007812 0.000000 0.007812 0.070312 0.007812
volvo 0.000000 0.000000 0.000000 0.062500 0.023438

In [15]:
# Convert the occurrences to percentages for each row
pd.crosstab(df.make, df.body_style, normalize='index')


Out[15]:
body_style convertible hardtop hatchback sedan wagon
make
honda 0.000000 0.000000 0.538462 0.384615 0.076923
mazda 0.000000 0.000000 0.588235 0.411765 0.000000
mitsubishi 0.000000 0.000000 0.692308 0.307692 0.000000
nissan 0.000000 0.055556 0.277778 0.500000 0.166667
subaru 0.000000 0.000000 0.250000 0.416667 0.333333
toyota 0.031250 0.093750 0.437500 0.312500 0.125000
volkswagen 0.083333 0.000000 0.083333 0.750000 0.083333
volvo 0.000000 0.000000 0.000000 0.727273 0.272727

In [16]:
# Convert the occurrences to percentages for each column
pd.crosstab(df.make, df.body_style, normalize='columns')


Out[16]:
body_style convertible hardtop hatchback sedan wagon
make
honda 0.0 0.00 0.142857 0.087719 0.0625
mazda 0.0 0.00 0.204082 0.122807 0.0000
mitsubishi 0.0 0.00 0.183673 0.070175 0.0000
nissan 0.0 0.25 0.102041 0.157895 0.1875
subaru 0.0 0.00 0.061224 0.087719 0.2500
toyota 0.5 0.75 0.285714 0.175439 0.2500
volkswagen 0.5 0.00 0.020408 0.157895 0.0625
volvo 0.0 0.00 0.000000 0.140351 0.1875

In [17]:
# If you want to make the percentages a little easier to see, multiple all values by 100
pd.crosstab(df.make, df.body_style, normalize='columns').mul(100).round(0)


Out[17]:
body_style convertible hardtop hatchback sedan wagon
make
honda 0.0 0.0 14.0 9.0 6.0
mazda 0.0 0.0 20.0 12.0 0.0
mitsubishi 0.0 0.0 18.0 7.0 0.0
nissan 0.0 25.0 10.0 16.0 19.0
subaru 0.0 0.0 6.0 9.0 25.0
toyota 50.0 75.0 29.0 18.0 25.0
volkswagen 50.0 0.0 2.0 16.0 6.0
volvo 0.0 0.0 0.0 14.0 19.0

Custom Aggregations and Grouping


In [18]:
# Perform aggregation functions - not just a simple count
pd.crosstab(df.make, df.body_style, values=df.curb_weight, aggfunc='mean').round(0)


Out[18]:
body_style convertible hardtop hatchback sedan wagon
make
honda NaN NaN 1970.0 2289.0 2024.0
mazda NaN NaN 2254.0 2361.0 NaN
mitsubishi NaN NaN 2377.0 2394.0 NaN
nissan NaN 2008.0 2740.0 2238.0 2452.0
subaru NaN NaN 2137.0 2314.0 2454.0
toyota 2975.0 2585.0 2370.0 2338.0 2708.0
volkswagen 2254.0 NaN 2221.0 2342.0 2563.0
volvo NaN NaN NaN 3023.0 3078.0

In [19]:
pd.crosstab(df.make, [df.body_style, df.drive_wheels], values=df.curb_weight, aggfunc='mean').fillna('-')


Out[19]:
body_style convertible hardtop hatchback sedan wagon
drive_wheels fwd rwd fwd rwd 4wd fwd rwd 4wd fwd rwd 4wd fwd rwd
make
honda - - - - - 1970 - - 2288.8 - - 2024 -
mazda - - - - - 2148.33 2411.25 - 2231.6 2685 - - -
mitsubishi - - - - - 2376.56 - - 2394 - - - -
nissan - - 2008 - - 2176 3116.33 - 2237.89 - - 2452.33 -
subaru - - - - 2240 2085 - 2447.5 2225 - 2535 2372.5 -
toyota - 2975 - 2585 - 2177.25 2626.83 - 2258.57 2521.67 2700 2280 3151
volkswagen 2254 - - - - 2221 - - 2342.22 - - 2563 -
volvo - - - - - - - - - 3023 - - 3077.67

In [20]:
# Crosstab supports grouping as well. In this case, group the columns
pd.crosstab(df.make, [df.body_style, df.drive_wheels])


Out[20]:
body_style convertible hardtop hatchback sedan wagon
drive_wheels fwd rwd fwd rwd 4wd fwd rwd 4wd fwd rwd 4wd fwd rwd
make
honda 0 0 0 0 0 7 0 0 5 0 0 1 0
mazda 0 0 0 0 0 6 4 0 5 2 0 0 0
mitsubishi 0 0 0 0 0 9 0 0 4 0 0 0 0
nissan 0 0 1 0 0 2 3 0 9 0 0 3 0
subaru 0 0 0 0 1 2 0 2 3 0 2 2 0
toyota 0 1 0 3 0 8 6 0 7 3 2 1 1
volkswagen 1 0 0 0 0 1 0 0 9 0 0 1 0
volvo 0 0 0 0 0 0 0 0 0 8 0 0 3

In [21]:
# A more complex example showing the grouping of rows and columns
pd.crosstab([df.make, df.num_doors], [df.body_style, df.drive_wheels], 
            rownames=['Auto Manufacturer', "Doors"], 
            colnames=['Body Style', "Drive Type"], 
            dropna=False)


Out[21]:
Body Style convertible hardtop hatchback sedan wagon
Drive Type 4wd fwd rwd 4wd fwd rwd 4wd fwd rwd 4wd fwd rwd 4wd fwd rwd
Auto Manufacturer Doors
honda four 0 0 0 0 0 0 0 0 0 0 4 0 0 1 0
two 0 0 0 0 0 0 0 7 0 0 1 0 0 0 0
mazda four 0 0 0 0 0 0 0 1 0 0 4 2 0 0 0
two 0 0 0 0 0 0 0 5 4 0 0 0 0 0 0
mitsubishi four 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0
two 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0
nissan four 0 0 0 0 0 0 0 1 0 0 5 0 0 3 0
two 0 0 0 0 1 0 0 1 3 0 4 0 0 0 0
subaru four 0 0 0 0 0 0 0 0 0 2 3 0 2 2 0
two 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0
toyota four 0 0 0 0 0 0 0 6 0 0 7 1 2 1 1
two 0 0 1 0 0 3 0 2 6 0 0 2 0 0 0
volkswagen four 0 0 0 0 0 0 0 0 0 0 7 0 0 1 0
two 0 1 0 0 0 0 0 1 0 0 2 0 0 0 0
volvo four 0 0 0 0 0 0 0 0 0 0 0 8 0 0 3
two 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

In [22]:
# You can also use agg functions when grouping
pd.crosstab(df.make, [df.body_style, df.drive_wheels], values=df.curb_weight, aggfunc='mean').fillna('-')


Out[22]:
body_style convertible hardtop hatchback sedan wagon
drive_wheels fwd rwd fwd rwd 4wd fwd rwd 4wd fwd rwd 4wd fwd rwd
make
honda - - - - - 1970 - - 2288.8 - - 2024 -
mazda - - - - - 2148.33 2411.25 - 2231.6 2685 - - -
mitsubishi - - - - - 2376.56 - - 2394 - - - -
nissan - - 2008 - - 2176 3116.33 - 2237.89 - - 2452.33 -
subaru - - - - 2240 2085 - 2447.5 2225 - 2535 2372.5 -
toyota - 2975 - 2585 - 2177.25 2626.83 - 2258.57 2521.67 2700 2280 3151
volkswagen 2254 - - - - 2221 - - 2342.22 - - 2563 -
volvo - - - - - - - - - 3023 - - 3077.67

In [23]:
# You can also use margins when grouping
pd.crosstab(df.make, [df.body_style, df.drive_wheels], 
            values=df.curb_weight, aggfunc='mean', margins=True,
            margins_name='Average').fillna('-').round(0)


Out[23]:
body_style convertible hardtop hatchback sedan wagon Average
drive_wheels fwd rwd fwd rwd 4wd fwd rwd 4wd fwd rwd 4wd fwd rwd
make
honda - - - - - 1970 - - 2288.8 - - 2024 - 2097.0
mazda - - - - - 2148.33 2411.25 - 2231.6 2685 - - - 2298.0
mitsubishi - - - - - 2376.56 - - 2394 - - - - 2382.0
nissan - - 2008 - - 2176 3116.33 - 2237.89 - - 2452.33 - 2400.0
subaru - - - - 2240 2085 - 2447.5 2225 - 2535 2372.5 - 2316.0
toyota - 2975 - 2585 - 2177.25 2626.83 - 2258.57 2521.67 2700 2280 3151 2441.0
volkswagen 2254 - - - - 2221 - - 2342.22 - - 2563 - 2343.0
volvo - - - - - - - - - 3023 - - 3077.67 3038.0
Average 2254 2975 2008 2585 2240 2178 2673.46 2447.5 2282.95 2855.31 2617.5 2371.12 3096 2406.0

Visualizing results with Seaborn


In [24]:
# Seaborn's heatmap can visualize the final results of the crosstab
sns.heatmap(pd.crosstab(df.drive_wheels, df.make))


Out[24]:
<matplotlib.axes._subplots.AxesSubplot at 0x7fe3115831d0>

In [25]:
# This is a more complex customization of a heatmap
sns.heatmap(pd.crosstab([df.make, df.num_doors], [df.body_style, df.drive_wheels]), cmap="YlGnBu", 
            annot=True, cbar=False)


Out[25]:
<matplotlib.axes._subplots.AxesSubplot at 0x7fe308feba58>

In [26]:
sns.heatmap(pd.crosstab(df.make, df.body_style, values=df.curb_weight, aggfunc='mean').round(0))


Out[26]:
<matplotlib.axes._subplots.AxesSubplot at 0x7fe308dae358>

In [27]:
sns.heatmap(pd.crosstab(df.make, [df.body_style, df.drive_wheels], 
            values=df.curb_weight, aggfunc='mean', margins=True, margins_name='Average'),
           cmap="YlGnBu", annot=True, cbar=False, fmt='.0f')


Out[27]:
<matplotlib.axes._subplots.AxesSubplot at 0x7fe308dd47f0>