In [1]:
    
!conda install -y netcdf4
    
    
In [14]:
    
from netCDF4 import Dataset, num2date, date2num
from numpy import *
import matplotlib.pyplot as plt
%matplotlib inline
    
In [3]:
    
from ipywidgets import interact, interactive, fixed
import ipywidgets as widgets
    
In [4]:
    
x=linspace(0,1,100)
f=2
    
In [5]:
    
plt.plot(x, sin(2*pi*x*f))
    
    Out[5]:
    
In [6]:
    
def pltsin(f):
    plt.plot(x,sin(2*pi*x*f))
    
In [7]:
    
pltsin(5)
    
    
In [8]:
    
interact(pltsin, f=(1,10,0.1))
    
    Out[8]:
    
In [9]:
    
def pltsin(f,a):
    plt.plot(x,a * sin(2*pi*x*f))
    
In [10]:
    
interact(pltsin, f=(1, 10, 0.1), a=(1, 10, 0.1))
    
    Out[10]:
    
In [16]:
    
f=Dataset('ncep-data/air.sig995.2013.nc')
    
In [17]:
    
air=f.variables['air'] #get variable
    
In [25]:
    
plt.imshow(air[364,:,:])  #display first timestep
    
    Out[25]:
    
In [19]:
    
def sh(time):
    plt.imshow(air[time,:,:])
    
In [24]:
    
#now make it interactive
interact(sh, time=(0,364,1))
    
    
In [36]:
    
# Browse variable
def sh(var='air', time=0):
    f=Dataset ('ncep-data/'+var+'.sig995.2013.nc')
    vv=f.variables[var]
    plt.imshow(vv[time,:,:])
    
In [37]:
    
# Give a list of varibles
variabs= ['air','uwnd','vwnd','rhum']
    
In [38]:
    
# Now interact with it
interact(sh, time=(0,355,1), var=variabs)
    
    Out[38]:
    
In [49]:
    
# Browse variable
def sh(var='air', year="2013", time=0):
    f=Dataset ('ncep-data/'+var+'.sig995.'+year+'.nc')
    vv=f.variables[var]
    plt.imshow(vv[time,:,:])
    
In [50]:
    
# Create a list of years
years= [str(x) for x in range (2013,2016)]
years = ['2013', '2014', '2015']
    
In [51]:
    
# Give a list of varibles
variabs= ['air','uwnd','vwnd','rhum']
    
In [53]:
    
# Now interact with it
interact(sh, time=(0,355,1), var=variabs, year=years)
    
    
In [ ]: