Version 17.0 example for multi-dimensional unfolding
Author: Stefan Schmitt, DESY
This notebook tutorial was automatically generated with ROOTBOOK-izer (Beta) from the macro found in the ROOT repository on Thursday, January 19, 2017 at 04:37 PM.
In [1]:
%%cpp -d
#include <iostream>
#include <fstream>
#include <TFile.h>
#include "TUnfoldBinning.h"
using namespace std;
In [2]:
// write binning schemes to root file
TFile *binningSchemes=new TFile("testUnfold5_binning.root","recreate");
// reconstructed pt, eta, discriminator
#define NBIN_PT_FINE 8
#define NBIN_ETA_FINE 10
#define NBIN_DISCR 4
// generated pt, eta
#define NBIN_PT_COARSE 3
#define NBIN_ETA_COARSE 3
// pt binning
Double_t ptBinsFine[NBIN_PT_FINE+1]=
{3.5,4.0,4.5,5.0,6.0,7.0,8.0,10.0,13.0};
Double_t ptBinsCoarse[NBIN_PT_COARSE+1]=
{ 4.0, 5.0, 7.0, 10.0};
// eta binning
Double_t etaBinsFine[NBIN_ETA_FINE+1]=
{-3.,-2.5,-2.0,-1.,-0.5,0.0,0.5,1.,2.,2.5,3.};
Double_t etaBinsCoarse[NBIN_ETA_COARSE+1]=
{ -2.0, -0.5, 0.5, 2. };
// discriminator bins
Double_t discrBins[NBIN_DISCR+1]={0.,0.15,0.5,0.85,1.0};
//=======================================================================
// detector level binning scheme
TUnfoldBinning *detectorBinning=new TUnfoldBinning("detector");
// highest discriminator bin has fine binning
TUnfoldBinning *detectorDistribution=
detectorBinning->AddBinning("detectordistribution");
detectorDistribution->AddAxis("pt",NBIN_PT_FINE,ptBinsFine,
false, // no underflow bin (not reconstructed)
true // overflow bin
);
detectorDistribution->AddAxis("eta",NBIN_ETA_FINE,etaBinsFine,
false, // no underflow bin (not reconstructed)
false // no overflow bin (not reconstructed)
);
detectorDistribution->AddAxis("discriminator",NBIN_DISCR,discrBins,
false, // no underflow bin (empty)
false // no overflow bin (empty)
);
/* TUnfoldBinning *detectorExtra=
detectorBinning->AddBinning("detectorextra",7,"one;zwei;three"); */
detectorBinning->PrintStream(cout);
//=======================================================================
// generator level binning
TUnfoldBinning *generatorBinning=new TUnfoldBinning("generator");
// signal distribution is measured with coarse binning
// underflow and overflow bins are needed ot take care of
// what happens outside the phase-space
TUnfoldBinning *signalBinning = generatorBinning->AddBinning("signal");
signalBinning->AddAxis("ptgen",NBIN_PT_COARSE,ptBinsCoarse,
true, // underflow bin
true // overflow bin
);
signalBinning->AddAxis("etagen",NBIN_ETA_COARSE,etaBinsCoarse,
true, // underflow bin
true // overflow bin
);
// background distribution is unfolded with fine binning
// !!! in the reconstructed variable !!!
//
// This has the effect of "normalizing" the background in each
// pt,eta bin to the low discriminator values
// Only the shape of the discriminator in each (pt,eta) bin
// is taken from Monte Carlo
//
// This method has been applied e.g. in
// H1 Collaboration, "Prompt photons in Photoproduction"
// Eur.Phys.J. C66 (2010) 17
//
TUnfoldBinning *bgrBinning = generatorBinning->AddBinning("background");
bgrBinning->AddAxis("ptrec",NBIN_PT_FINE,ptBinsFine,
false, // no underflow bin (not reconstructed)
true // overflow bin
);
bgrBinning->AddAxis("etarec",NBIN_ETA_FINE,etaBinsFine,
false, // no underflow bin (not reconstructed)
false // no overflow bin (not reconstructed)
);
generatorBinning->PrintStream(cout);
detectorBinning->Write();
generatorBinning->Write();
delete binningSchemes;