root > .x permute.C
root > .x permute.C+ with ACLIC
Author: Federico Carminati
This notebook tutorial was automatically generated with ROOTBOOK-izer (Beta) from the macro found in the ROOT repository on Thursday, January 19, 2017 at 04:34 PM.
In [1]:
%%cpp -d
#include <TMath.h>
A helper function is created:
In [2]:
%%cpp -d
int permuteSimple1 ()
{
printf("\nTMath::Permute simple test\n");
printf("==========================\n");
char aa='a';
Int_t a[4];
Int_t i;
Int_t icount=0;
for(i=0; i<4; i++) a[i]=i;
do {
icount++;
for(Int_t i=0;i<4;printf("%c",static_cast<char>(aa+a[i++])));
printf("\n");
} while(TMath::Permute(4,a));
printf("Found %d permutations = 4!\n",icount);
return 0;
}
A helper function is created:
In [3]:
%%cpp -d
int permuteSimple2 ()
{
printf("\nTMath::Permute simple test with repetition\n");
printf("==========================================\n");
char aa='a'-1;
Int_t a[6];
Int_t i;
Int_t icount=0;
for(i=0; i<6; i++) a[i]=(i+2)/2;
do {
icount++;
for(Int_t i=0;i<5;printf("%c",static_cast<char>(aa+a[i++])));
printf("\n");
} while(TMath::Permute(5,a));
printf("Found %d permutations = 5!/(2! 2!)\n",icount);
return 0;
}
A helper function is created:
In [4]:
%%cpp -d
Int_t permuteFancy()
{
Int_t a[10];
Int_t &n=a[0], &i=a[1];
Int_t &e=a[2], &t=a[3];
Int_t &h=a[4], &r=a[5];
Int_t &f=a[6], &o=a[7];
Int_t &s=a[8], &u=a[9];
Int_t nine, three, neuf, trois;
printf("\nTMath::Permute fancy test\n");
printf("=========================\n");
printf("This is a program to calculate the solution to the following problem\n");
printf("Find the equivalence between letters and numbers so that\n\n");
printf(" NINE*THREE = NEUF*TROIS\n\n");
for(Int_t ii=0; ii<10; ii++) a[ii]=ii;
do {
nine=((n*10+i)*10+n)*10+e;
neuf=((n*10+e)*10+u)*10+f;
three=(((t*10+h)*10+r)*10+e)*10+e;
trois=(((t*10+r)*10+o)*10+i)*10+s;
if(nine*three==neuf*trois) {
printf("Solution found!\n\n");
printf("T=%d N=%d E=%d S=%d F=%d H=%d R=%d I=%d O=%d U=%d\n",t,n,e,s,f,h,r,i,o,u);
printf("NINE=%d THREE=%d NEUF=%d TROIS=%d\n",nine,three,neuf,trois);
printf("NINE*THREE = NEUF*TROIS = %d\n",neuf*trois);
return 0;
}
} while(TMath::Permute(10,a));
printf("No solutions found -- something is wrong here!\n");
return 0;
}
In [5]:
permuteSimple1();
permuteSimple2();
permuteFancy();