Late penalty: 1 mark per day
For this assignment, you must use Nengo, which can be downloaded from http://nengo.ai.
Make a new model and inside that model make an ensemble of neurons. It should have 100 neurons, and represent a 1-dimensional space. The intercepts should be between -1 and 1, and the maximum firing rates should be between 100Hz and 200Hz. $\tau_{RC}$ should be 0.02s and $\tau_{ref}$ should be 0.002s.
Note: You don't need to run the model over time for this question.
Make a second ensemble of spiking neurons. It should have the same parameters as the first ensemble of neurons (from the first question), but have only 50 neurons in it. Connect the first ensemble to the second such that it computes the identity function, using a post-synaptic time constant of 0.01. Create an input that is a value of 1 for 0.1<t<0.4 seconds, and otherwise is zero (you can use a lambda function).
Build a neural integrator. This consists of one ensemble, one input, a connection from the input to the ensemble, and a connection from the ensemble back to itself. The ensemble should have 200 neurons and the same parameters as in question 1. The post-synaptic time constant of the recurrent connection is 0.05, and the post-synaptic time constant of the input is 0.005.
To be an integrator, the desired dynamical system is ${{dx} \over {dt}} = u$. To implement this with the NEF, we use the transformation discussed in class, so the feedback connection should compute $f'(x)=x$ and the input connection should compute $g'(x)=\tau u$, where $u$ is the input and $\tau$ is the post-synaptic time constant of the feedback connection. So the feedback connection should compute the identity function and the input connection should compute 0.05 times the input.
For all probes, use a synapse of 0.01. Explicitly plot the ideal, which can help when answering the questions.
In [ ]: