.. _getting_start:

You can code your own scripts using pergola as a Python library. Here we summarize some examples of how you can use it on your scripts.

Tip: This page is available as a Jupyter Notebook on /pergola/doc/notebooks under pergola GitHub repository. Should you want, you can interactively execute the code using Jupyter.

Input data

The two basics data inputs pergola uses is a file with longitudinal recordings (sequence of temporal events) in the form of a CSV or xlsx file and a mapping file containing the correspondence between the fields in this previous file and the pergola ontology.

Sequence of temporal events

Pergola can process any sequence of temporal events contained in a character-separated file as in the example below:

Animal  StartT  EndT    Behavior    Value
1   137 156 eat 0.06
1   168 192 drink   0.02
1   250 281 eat 0.07
1   311 333 eat 0.08
1   457 482 drink   0.02
1   569 601 drink   0.03
Note: This example loads a sequence of eating and drinking events from a experiment where mice were used to study feeding behavior.

Mapping file

Pergola needs that you set the equivalences between the fields of the input data and a controled vocabular defined by Pergola ontology. The format of the mapping file is the external mapping file format from the Gene Ontology Consortium, you can see an example below:

! Mapping of behavioural fields into genome browser fields
!
behavioural_file:Animal > pergola:track
behavioural_file:StartT > pergola:chromStart
behavioural_file:EndT > pergola:chromEnd
behavioural_file:Behavior > pergola:dataTypes
behavioural_file:Value > pergola:dataValue

In [1]:
# You might have to set the path to run this notebook directly from ipython notebook
import sys

my_path_to_modules = "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/"
sys.path.append(my_path_to_modules)

MappingInfo objects

Mappings between the input data and pergola ontology are loaded in MappingInfo objects:


In [2]:
from pergola import mapping
# load mapping file 
mapping_info = mapping.MappingInfo("../../sample_data/feeding_behavior/b2p.txt")

To view the mappings MappingInfo objects provide the :func:pergola.mapping.Mapping.write method


In [3]:
mapping_info.write()


EndT 	end
Nature 	data_types
Value 	data_value
StartT 	start
Phase 	chrom
CAGE 	track

MappingInfo objects are needed to load data into IntData objects as it will be explained in the lines below.

IntData objects

IntData objects load all the intervals of a file:


In [7]:
from pergola import parsers
from pergola import intervals


# load the data into an IntData object that will store the sequence of events
int_data = intervals.IntData("../../sample_data/feeding_behavior/feeding_behavior_HF_mice.csv", map_dict=mapping_info.correspondence)


Input file format identified as csv

Intervals when loaded are stored in a list of tuples that can be accessed by data attribute:


In [8]:
#Displays first 10 tuples of data list
int_data.data[:10]


Out[8]:
[('1', 1335985232, 'food_sc', 1335985200, '0.02'),
 ('1', 1335986427, 'food_sc', 1335986151, '0.1'),
 ('1', 1335986451, 'water', 1335986420, '0.08'),
 ('1', 1335986553, 'water', 1335986541, '0.02'),
 ('1', 1335986844, 'water', 1335986832, '0.02'),
 ('1', 1335986947, 'food_sc', 1335986845, '0.02'),
 ('1', 1335987059, 'water', 1335987044, '0.02'),
 ('1', 1335987223, 'food_sc', 1335987089, '0.02'),
 ('1', 1335987495, 'food_sc', 1335987424, '0.02'),
 ('1', 1335987574, 'water', 1335987546, '0.04')]

IntData objects also provide some other attributes like the set of different tracks (term for IDs in pergola ontology) contained in the data:


In [9]:
int_data.data_types


Out[9]:
{'food_fat', 'food_sc', 'water'}

The minimun value present in the data:


In [10]:
int_data.min


Out[10]:
1335985200

The maximun value:


In [11]:
int_data.max


Out[11]:
1337799586

The set of different tracks present in the data (term for different IDs in pergola ontology). In this case the different IDs for each mice:


In [12]:
int_data.tracks


Out[12]:
{'1',
 '10',
 '11',
 '12',
 '13',
 '14',
 '15',
 '16',
 '17',
 '18',
 '2',
 '3',
 '4',
 '5',
 '7',
 '8',
 '9'}

And finally the dataTypes (term for different types of data in pergola ontology) that can be used to encode for example different behaviours:


In [14]:
mapping_info.write()


EndT 	end
Nature 	data_types
Value 	data_value
StartT 	start
Phase 	chrom
CAGE 	track

In [15]:
mapping_info.correspondence['EndT']


Out[15]:
'end'

Data conversion:

GenomicContainer is a generic class from which three subclasses derive:

Track objects

Data can be loaded into a Track objects by read function. This function allows to convert the intervals to relative values using the first time point as 0:


In [16]:
int_data_read = int_data.read(relative_coord=True)


Relative coordinates set to: True

In [17]:
int_data_read.list_tracks


Out[17]:
{'1',
 '10',
 '11',
 '12',
 '13',
 '14',
 '15',
 '16',
 '17',
 '18',
 '2',
 '3',
 '4',
 '5',
 '7',
 '8',
 '9'}

In [18]:
int_data_read.range_values


Out[18]:
[0.02, 8.82]

In [19]:
dict_bed = int_data_read.convert(mode='bed')

In [20]:
#dict_bed = data_read.convert(mode='bed')
for key in dict_bed:
    print "key.......: ",key#del
    bedSingle = dict_bed [key]
    print "::::::::::::::",bedSingle.data_types


key.......:  ('12', 'food_sc')
:::::::::::::: food_sc
key.......:  ('7', 'food_sc')
:::::::::::::: food_sc
key.......:  ('14', 'water')
:::::::::::::: water
key.......:  ('1', 'food_sc')
:::::::::::::: food_sc
key.......:  ('12', 'food_fat')
:::::::::::::: food_fat
key.......:  ('2', 'food_sc')
:::::::::::::: food_sc
key.......:  ('10', 'food_fat')
:::::::::::::: food_fat
key.......:  ('15', 'food_sc')
:::::::::::::: food_sc
key.......:  ('17', 'water')
:::::::::::::: water
key.......:  ('14', 'food_fat')
:::::::::::::: food_fat
key.......:  ('5', 'food_sc')
:::::::::::::: food_sc
key.......:  ('18', 'food_fat')
:::::::::::::: food_fat
key.......:  ('2', 'water')
:::::::::::::: water
key.......:  ('11', 'water')
:::::::::::::: water
key.......:  ('16', 'food_fat')
:::::::::::::: food_fat
key.......:  ('16', 'water')
:::::::::::::: water
key.......:  ('14', 'food_sc')
:::::::::::::: food_sc
key.......:  ('11', 'food_sc')
:::::::::::::: food_sc
key.......:  ('4', 'water')
:::::::::::::: water
key.......:  ('3', 'food_sc')
:::::::::::::: food_sc
key.......:  ('2', 'food_fat')
:::::::::::::: food_fat
key.......:  ('10', 'water')
:::::::::::::: water
key.......:  ('9', 'water')
:::::::::::::: water
key.......:  ('4', 'food_sc')
:::::::::::::: food_sc
key.......:  ('8', 'water')
:::::::::::::: water
key.......:  ('7', 'water')
:::::::::::::: water
key.......:  ('17', 'food_sc')
:::::::::::::: food_sc
key.......:  ('9', 'food_sc')
:::::::::::::: food_sc
key.......:  ('12', 'water')
:::::::::::::: water
key.......:  ('16', 'food_sc')
:::::::::::::: food_sc
key.......:  ('5', 'water')
:::::::::::::: water
key.......:  ('10', 'food_sc')
:::::::::::::: food_sc
key.......:  ('13', 'water')
:::::::::::::: water
key.......:  ('8', 'food_fat')
:::::::::::::: food_fat
key.......:  ('1', 'water')
:::::::::::::: water
key.......:  ('3', 'water')
:::::::::::::: water
key.......:  ('18', 'food_sc')
:::::::::::::: food_sc
key.......:  ('15', 'water')
:::::::::::::: water
key.......:  ('18', 'water')
:::::::::::::: water
key.......:  ('4', 'food_fat')
:::::::::::::: food_fat
key.......:  ('13', 'food_sc')
:::::::::::::: food_sc
key.......:  ('8', 'food_sc')
:::::::::::::: food_sc

In [21]:
bed_12_food_sc = dict_bed[('2', 'food_sc')]

In [22]:
bed_12_food_sc.range_values


Out[22]:
['0.02', '0.540000000000001']

In [23]:
type(bed_12_food_sc)


Out[23]:
pergola.tracks.Bed

In [24]:
bed_12_food_sc.data    

# Code to print the data inside a bed object (generator object)
#for row in bed_12_food_sc.data:
#    print row


Out[24]:
<generator object track_convert2bed at 0x1077e5550>

In [25]:
dict_bedGraph = int_data_read.convert(mode='bedGraph')

In [26]:
for key in dict_bedGraph:
    print "key.......: ",key#del
    bedGraphSingle = dict_bedGraph [key]
    print "::::::::::::::",bedGraphSingle.data_types


key.......:  ('12', 'food_sc')
:::::::::::::: food_sc
key.......:  ('7', 'food_sc')
:::::::::::::: food_sc
key.......:  ('14', 'water')
:::::::::::::: water
key.......:  ('1', 'food_sc')
:::::::::::::: food_sc
key.......:  ('12', 'food_fat')
:::::::::::::: food_fat
key.......:  ('2', 'food_sc')
:::::::::::::: food_sc
key.......:  ('10', 'food_fat')
:::::::::::::: food_fat
key.......:  ('15', 'food_sc')
:::::::::::::: food_sc
key.......:  ('17', 'water')
:::::::::::::: water
key.......:  ('14', 'food_fat')
:::::::::::::: food_fat
key.......:  ('5', 'food_sc')
:::::::::::::: food_sc
key.......:  ('18', 'food_fat')
:::::::::::::: food_fat
key.......:  ('2', 'water')
:::::::::::::: water
key.......:  ('11', 'water')
:::::::::::::: water
key.......:  ('16', 'food_fat')
:::::::::::::: food_fat
key.......:  ('16', 'water')
:::::::::::::: water
key.......:  ('14', 'food_sc')
:::::::::::::: food_sc
key.......:  ('11', 'food_sc')
:::::::::::::: food_sc
key.......:  ('4', 'water')
:::::::::::::: water
key.......:  ('3', 'food_sc')
:::::::::::::: food_sc
key.......:  ('2', 'food_fat')
:::::::::::::: food_fat
key.......:  ('10', 'water')
:::::::::::::: water
key.......:  ('9', 'water')
:::::::::::::: water
key.......:  ('4', 'food_sc')
:::::::::::::: food_sc
key.......:  ('8', 'water')
:::::::::::::: water
key.......:  ('7', 'water')
:::::::::::::: water
key.......:  ('17', 'food_sc')
:::::::::::::: food_sc
key.......:  ('9', 'food_sc')
:::::::::::::: food_sc
key.......:  ('12', 'water')
:::::::::::::: water
key.......:  ('16', 'food_sc')
:::::::::::::: food_sc
key.......:  ('5', 'water')
:::::::::::::: water
key.......:  ('10', 'food_sc')
:::::::::::::: food_sc
key.......:  ('13', 'water')
:::::::::::::: water
key.......:  ('8', 'food_fat')
:::::::::::::: food_fat
key.......:  ('1', 'water')
:::::::::::::: water
key.......:  ('3', 'water')
:::::::::::::: water
key.......:  ('18', 'food_sc')
:::::::::::::: food_sc
key.......:  ('15', 'water')
:::::::::::::: water
key.......:  ('18', 'water')
:::::::::::::: water
key.......:  ('4', 'food_fat')
:::::::::::::: food_fat
key.......:  ('13', 'food_sc')
:::::::::::::: food_sc
key.......:  ('8', 'food_sc')
:::::::::::::: food_sc

In [27]:
bedG_8_food_sc = dict_bedGraph[('8', 'food_sc')]

Track object


In [28]:
bedG_8_food_sc.data

# Code to print the data inside a bed object (generator object)
#for row in bedG_8_food_sc:
#    print row


Out[28]:
<generator object track_convert2bedGraph at 0x1081f9690>

In [29]:
type(int_data_read)


Out[29]:
pergola.tracks.Track

In [30]:
type(int_data_read.data)


Out[30]:
list

In [31]:
int_data_read.range_values


Out[31]:
[0.02, 8.82]

In [32]:
int_data_read.list_tracks


Out[32]:
{'1',
 '10',
 '11',
 '12',
 '13',
 '14',
 '15',
 '16',
 '17',
 '18',
 '2',
 '3',
 '4',
 '5',
 '7',
 '8',
 '9'}

In [33]:
int_data_read.data[-10]


Out[33]:
('18', 1812042, 'food_fat', 1811948, '0.14')

In [34]:
int_data_read.data_types


Out[34]:
{'food_fat', 'food_sc', 'water'}

In [35]:
#data_read.convert(mode=write_format, tracks=sel_tracks, tracks_merge=tracks2merge, 
#                                 data_types=data_types_list, dataTypes_actions=dataTypes_act, 
#                                 window=window_size)

In [36]:
mapping.write_chr (int_data_read)


Chromosome fasta like file will be dump into "/Users/jespinosa/git/pergola/doc/notebooks" as it has not been set using path_w
Genome fasta file created: /Users/jespinosa/git/pergola/doc/notebooks/chr1.fa

In [37]:
# Generate a cytoband file and a bed file with phases
mapping.write_cytoband(end = int_data.max - int_data.min, delta=43200, start_phase="dark", lab_bed=False)


Cytoband like file will be dump into "/Users/jespinosa/git/pergola/doc/notebooks" as it has not been set using path_w
Bed files with phases will be dump into "/Users/jespinosa/git/pergola/doc/notebooks" as it has not been set using path_w

In [38]:
#data_read = intData.read(relative_coord=True, multiply_t=1)
data_read = int_data.read(relative_coord=True)


Relative coordinates set to: True

In [39]:
#for i in data_read.data:
#        print i

In [40]:
data_type_col = {'food_sc': 'orange', 'food_fat':'blue'}

In [41]:
bed_str = data_read.convert(mode="bed", data_types=["food_sc", "food_fat"], dataTypes_actions="all", 
                            color_restrictions=data_type_col)


Removed data types are: water

In [42]:
for key in bed_str:
    bedSingle = bed_str[key]
    bedSingle.save_track()


No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File tr_12_dt_food_sc.bed generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File tr_14_dt_food_fat.bed generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File tr_1_dt_food_sc.bed generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File tr_2_dt_food_sc.bed generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File tr_15_dt_food_sc.bed generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File tr_5_dt_food_sc.bed generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File tr_16_dt_food_fat.bed generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File tr_14_dt_food_sc.bed generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File tr_11_dt_food_sc.bed generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File tr_3_dt_food_sc.bed generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File tr_2_dt_food_fat.bed generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File tr_10_dt_food_fat.bed generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File tr_4_dt_food_sc.bed generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File tr_17_dt_food_sc.bed generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File tr_9_dt_food_sc.bed generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File tr_12_dt_food_fat.bed generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File tr_16_dt_food_sc.bed generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File tr_10_dt_food_sc.bed generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File tr_8_dt_food_fat.bed generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File tr_7_dt_food_sc.bed generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File tr_18_dt_food_sc.bed generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File tr_18_dt_food_fat.bed generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File tr_4_dt_food_fat.bed generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File tr_13_dt_food_sc.bed generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File tr_8_dt_food_sc.bed generated

Output data

pergola allows the conversion to several genomic formats, here we summarize some commands and operations as an example of pergola capabilities:

Bed file

track type=bed name="1_eat" description="1 eat" visibility=2 itemRgb="On" priority=20
chr1    137.0   156.0   ""  0.06    +   137.0   156.0   51,254,51
chr1    250.0   281.0   ""  0.07    +   250.0   281.0   0,254,0
chr1    311.0   333.0   ""  0.08    +   311.0   333.0   25,115,25
track type=bed name="1_eat" description="1 eat" visibility=2 itemRgb="On" priority=20
chr1    0   19  ""  0.06    +   0   19  51,254,51
chr1    113 144 ""  0.07    +   113 144 0,254,0
chr1    174 196 ""  0.08    +   174 196 25,115,25

In [43]:
data_type_col_bedGraph = {'food_sc':'orange', 'food_fat_food_sc':'blue'}

In [44]:
bedGraph_str = data_read.convert(mode="bedGraph", window=1800, data_types=["food_sc", "food_fat"], dataTypes_actions="all", color_restrictions=data_type_col_bedGraph)


Removed data types are: water

In [45]:
for key in bedGraph_str:
    bedGraph_single = bedGraph_str[key]
    bedGraph_single.save_track()


No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File tr_12_dt_food_sc.bedGraph generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File tr_14_dt_food_fat.bedGraph generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File tr_1_dt_food_sc.bedGraph generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File tr_2_dt_food_sc.bedGraph generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File tr_15_dt_food_sc.bedGraph generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File tr_5_dt_food_sc.bedGraph generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File tr_16_dt_food_fat.bedGraph generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File tr_14_dt_food_sc.bedGraph generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File tr_11_dt_food_sc.bedGraph generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File tr_3_dt_food_sc.bedGraph generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File tr_2_dt_food_fat.bedGraph generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File tr_10_dt_food_fat.bedGraph generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File tr_4_dt_food_sc.bedGraph generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File tr_17_dt_food_sc.bedGraph generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File tr_9_dt_food_sc.bedGraph generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File tr_12_dt_food_fat.bedGraph generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File tr_16_dt_food_sc.bedGraph generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File tr_10_dt_food_sc.bedGraph generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File tr_8_dt_food_fat.bedGraph generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File tr_7_dt_food_sc.bedGraph generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File tr_18_dt_food_sc.bedGraph generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File tr_18_dt_food_fat.bedGraph generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File tr_4_dt_food_fat.bedGraph generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File tr_13_dt_food_sc.bedGraph generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File tr_8_dt_food_sc.bedGraph generated

bedGraph files

track type=bedGraph name="1_eat" description="1_eat" visibility=full color=0,254,0 altColor=25,115,25 priority=20
chr1    0   30  0.06
chr1    30  60  0
chr1    60  90  0
chr1    90  120 0.0158064516129
chr1    120 150 0.0541935483871
chr1    150 180 0.0218181818182
chr1    180 210 0.0581818181818
chr1    210 240 0

In [48]:
## Bed file showing the files (recordings)
# reading correspondence file
mapping_file_data = mapping.MappingInfo("../../sample_data/feeding_behavior/f2g.txt")

In [49]:
mapping_file_data.write()


Value 	data_value
EndT 	end
StartT 	start
File 	track
NameFile 	data_types

In [50]:
# Reading file info
files_data = intervals.IntData("../../sample_data/feeding_behavior/files.csv", map_dict=mapping_file_data.correspondence)
data_file_read = files_data.read(relative_coord=True)


Input file format identified as csv
Relative coordinates set to: True

In [51]:
bed_file = data_file_read.convert(mode="bed", dataTypes_actions="all", tracks_merge=files_data.tracks)


Tracks that will be merged are: 1 3 2 5 4 7 6 9 8

In [52]:
for key in bed_file:
    bed_file_single = bed_file[key]
    bed_file_single.save_track(name_file = "files_data")


No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File files_data.bed generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File files_data.bed generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File files_data.bed generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File files_data.bed generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File files_data.bed generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File files_data.bed generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File files_data.bed generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File files_data.bed generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File files_data.bed generated

In [53]:
# Reading phase info
phase_data = intervals.IntData("../../sample_data/feeding_behavior/phases_exp.csv", map_dict=mapping_file_data.correspondence)
data_phase_read = phase_data.read(relative_coord=True)


Input file format identified as csv
Relative coordinates set to: True

In [54]:
bed_file = data_phase_read.convert(mode="bed", dataTypes_actions="all", tracks_merge=phase_data.tracks)


Tracks that will be merged are: 1 2

In [55]:
for key in bed_file:
    bed_file_single = bed_file[key]
    bed_file_single.save_track(name_file = "phase_exp")


No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File phase_exp.bed generated
No path selected, files dump into path:  /Users/jespinosa/git/pergola/doc/notebooks
File phase_exp.bed generated

means bed file to delete

chr1    1   1801    ""  1000    +   0   1   0.06
chr1    137171  138971  ""  1000    +   132936  137171  0
chr1    397442  399242  ""  1000    +   391684  397442  0
chr1    568633  570433  ""  1000    +   563646  568633  0.125714

intermeal to delete

chr1    1   30  ""  1000    +   1   30  0
chr1    183 345 ""  1000    +   183 345 0
chr1    502 924 ""  1000    +   502 924 0

In [ ]: