In [61]:
# This tells matplotlib not to try opening a new window for each plot.
%matplotlib inline

# General libraries.
import re
import time as time
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm
import matplotlib.cm as cm
from matplotlib.ticker import FormatStrFormatter
from itertools import product
import pandas as pd
from IPython.display import display, HTML

# feature analysis and selection
from sklearn.decomposition import PCA, KernelPCA
from sklearn.feature_selection import SelectKBest
from sklearn.feature_extraction import DictVectorizer

# Preprocessing
from sklearn.preprocessing import FunctionTransformer, LabelEncoder, OneHotEncoder, Imputer
from sklearn.model_selection import train_test_split, cross_val_score

# Processing
from sklearn.pipeline import Pipeline, make_pipeline, FeatureUnion
from sklearn.metrics import explained_variance_score, mean_absolute_error, mean_squared_error, r2_score
from sklearn import metrics

# SKLearn
from statsmodels.regression.linear_model import OLS
from sklearn.linear_model import LinearRegression, Ridge
from sklearn.svm import SVR
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import BernoulliNB, MultinomialNB
#from sklearn.grid_search import GridSearchCV
from sklearn.model_selection import GridSearchCV
from sklearn.cluster import KMeans
from sklearn.mixture import GaussianMixture

Data Fields

SOC, pH, Ca, P, Sand are the five target variables for predictions. The data have been monotonously transformed from the original measurements and thus include negative values.

  • PIDN: unique soil sample identifier

  • SOC: Soil organic carbon

  • pH: pH values
  • Ca: Mehlich-3 extractable Calcium
  • P: Mehlich-3 extractable Phosphorus

  • Sand: Sand content

  • m7497.96 - m599.76: There are 3,578 mid-infrared absorbance measurements. For example, the "m7497.96" column is the absorbance at wavenumber 7497.96 cm-1. We suggest you to remove spectra CO2 bands which are in the region m2379.76 to m2352.76, but you do not have to.

  • Depth: Depth of the soil sample (2 categories: "Topsoil", "Subsoil")

Some potential spatial predictors from remote sensing data sources are included. Short variable descriptions are provided below and additional descriptions can be found at AfSIS data. The data have been mean centered and scaled.

  • BSA: average long-term Black Sky Albedo measurements from MODIS satellite images (BSAN = near-infrared, BSAS = shortwave, BSAV = visible)
  • CTI: compound topographic index calculated from Shuttle Radar Topography Mission elevation data
  • ELEV: Shuttle Radar Topography Mission elevation data
  • EVI: average long-term Enhanced Vegetation Index from MODIS satellite images.
  • LST: average long-term Land Surface Temperatures from MODIS satellite images (LSTD = day time temperature, LSTN = night time temperature)
  • Ref: average long-term Reflectance measurements from MODIS satellite images (Ref1 = blue, Ref2 = red, Ref3 = near-infrared, Ref7 = mid-infrared)
  • Reli: topographic Relief calculated from Shuttle Radar Topography mission elevation data
  • TMAP & TMFI: average long-term Tropical Rainfall Monitoring Mission data (TMAP = mean annual precipitation, TMFI = modified Fournier index)

In [62]:
# Load training data

X = np.genfromtxt('training.csv', 
                  delimiter=',', 
                  dtype=None,
                  skip_header = 1,
                  usecols=range(1, 3594)) # Load columns 1 to 3594 inclusive

n = np.genfromtxt('training.csv', 
                  delimiter=',', 
                  max_rows = 1,
                  names = True,
                  usecols=range(1, 3594)) # Load columns 1 to 3594 inclusive
feature_names = np.asarray(n.dtype.names)

Depth = np.genfromtxt('training.csv',
                  delimiter=',', 
                  dtype=None,
                  skip_header = 1,
                  usecols=3594) # Load Depth values

PIDN = np.genfromtxt('training.csv',
                    delimiter=',',
                    dtype=None,
                    skip_header = 1,
                    usecols=0) # Load the PIDN for reference

Ca = np.genfromtxt('training.csv', 
                   delimiter=',', 
                   dtype=None,
                   skip_header = 1,
                   usecols=3595) # Load Mehlich-3 extractable Calcium data

P = np.genfromtxt('training.csv', 
                   delimiter=',', 
                   dtype=None,
                   skip_header = 1,
                   usecols=3596) # Load Mehlich-3 extractable Phosphorus data

pH = np.genfromtxt('training.csv', 
                   delimiter=',', 
                   dtype=None,
                   skip_header = 1,
                   usecols=3597) # Load pH data

SOC = np.genfromtxt('training.csv', 
                    delimiter=',', 
                    dtype=None,
                    skip_header = 1,
                    usecols=3598) # Load Soil Organic Carbon data

Sand = np.genfromtxt('training.csv', 
                     delimiter=',', 
                     dtype=None,
                     skip_header = 1,
                     usecols=3599) # Load Sand Content data

# Outcome (or response) variable list
y_var_labels = ['Ca', 'P', 'pH', 'SOC', 'Sand']
y_vars = [Ca, P, pH, SOC, Sand]

# Color map for outcome variables
colors = ['orange', 'yellowgreen', 'powderblue', 'sienna', 'tan']

In [63]:
# Load test data

test_x = np.genfromtxt('sorted_test.csv', 
                                delimiter=',', 
                                dtype=None,
                                skip_header = 1,
                                usecols=range(1, 3594)) # Load columns 0 to 3594 inclusive

test_depth = np.genfromtxt('sorted_test.csv',
                  delimiter=',', 
                  dtype=None,
                  skip_header = 1,
                  usecols=3594) # Load Depth values

test_ids = np.genfromtxt('sorted_test.csv', 
                                delimiter=',', 
                                dtype=None,
                                skip_header = 1,
                                usecols=0) # Load columns 0 to 3594 inclusive

In [71]:
# Transform depth and concatenate to X and test_x for use

le = LabelEncoder()
depth_enc = le.fit(Depth).transform(Depth).astype(np.float64)
test_depth_enc = le.fit(test_depth).transform(test_depth).astype(np.float64)

X_wDepth = np.concatenate((X, depth_enc.reshape(1,-1).T), axis=1)
test_x_wdepth = np.concatenate((test_x, test_depth_enc.reshape(1,-1).T), axis=1)

In [64]:
# Inspect the data shapes

print "Training data shape: ", X.shape
print "Feature name shape: ", feature_names.shape
print "PIDN data shape: ", PIDN.shape
print "Depth data shape: ", Depth.shape
print "Ca data shape: ", Ca.shape
print "P data shape: ", P.shape
print "pH data shape: ", pH.shape
print "SOC data shape: ", SOC.shape
print "Sand data shape: ", Sand.shape
print "Test data shape: ", test_x.shape
print "Test_ids shape: ", test_ids.shape


Training data shape:  (1157, 3593)
Feature name shape:  (3593,)
PIDN data shape:  (1157,)
Depth data shape:  (1157,)
Ca data shape:  (1157,)
P data shape:  (1157,)
pH data shape:  (1157,)
SOC data shape:  (1157,)
Sand data shape:  (1157,)
Test data shape:  (727, 3593)
Test_ids shape:  (727,)

In [65]:
# Inspect the data in the five response variables

print "Ca: total = %d, max = %0.2f, mean = %0.2f, min = %0.2f" % (Ca.shape[0], np.max(Ca), np.mean(Ca), np.min(Ca))
print "P: total = %d, max = %0.2f, mean = %0.2f, min = %0.2f" % (P.shape[0], np.max(P), np.mean(P), np.min(P))
print "pH: total = %d, max = %0.2f, mean = %0.2f, min = %0.2f" % (pH.shape[0], np.max(pH), np.mean(pH), np.min(pH))
print "SOC: total = %d, max = %0.2f, mean = %0.2f, min = %0.2f" % (SOC.shape[0], np.max(SOC), np.mean(SOC), np.min(SOC))
print "Sand: total = %d, max = %0.2f, mean = %0.2f, min = %0.2f" % (Sand.shape[0], np.max(Sand), 
                                                                  np.mean(Sand), np.min(Sand))

def plot_hist(ind, data, max_y, title, color):

    counts, bins, patches = ax[ind].hist(data, facecolor=color, edgecolor='gray')
    # set the ticks to be at the edges of the bins.
    ax[ind].set_xticks(bins)
    # set the limits for x and y
    ax[ind].set_xlim([np.min(data),np.max(data)])
    ax[ind].set_ylim([0,max_y])
    # set the xaxis's tick labels to be formatted with 1 decimal place
    ax[ind].xaxis.set_major_formatter(FormatStrFormatter('%0.1f'))
    ax[ind].set_title(title, fontsize=18)
  
    # Label the raw counts and the percentages below the x-axis
    bin_centers = 0.5 * np.diff(bins) + bins[:-1]
    for count, x in zip(counts, bin_centers):
        # Label the raw counts
        ax[ind].annotate(str(count), xy=(x, 0), xycoords=('data', 'axes fraction'),
            xytext=(0, -18), textcoords='offset points', va='top', ha='center')

        # Label the percentages
        percent = '%0.1f%%' % (100 * float(count) / counts.sum())
        ax[ind].annotate(percent, xy=(x, 0), xycoords=('data', 'axes fraction'),
            xytext=(0, -32), textcoords='offset points', va='top', ha='center')


fig, ax = plt.subplots(3, 2, figsize=(15, 20))
fig.subplots_adjust(hspace = 0.5, wspace=.2)
ax = ax.ravel()

# Ca
plot_hist(0, Ca, Ca.shape[0], 'Ca Value Histogram', colors[0])
# P
plot_hist(1, P, P.shape[0], 'P Value Histogram', colors[1])
#pH
plot_hist(2, pH, pH.shape[0], 'pH Value Histogram', colors[2])
#SOC
plot_hist(3, SOC, SOC.shape[0], 'SOC Value Histogram', colors[3])
#Sand
plot_hist(4, Sand, Sand.shape[0], 'Sand Value Histogram', colors[4])
# delete the last subplot
fig.delaxes(ax[5])


Ca: total = 1157, max = 9.65, mean = 0.01, min = -0.54
P: total = 1157, max = 13.27, mean = -0.01, min = -0.42
pH: total = 1157, max = 3.42, mean = -0.03, min = -1.89
SOC: total = 1157, max = 7.62, mean = 0.08, min = -0.86
Sand: total = 1157, max = 2.25, mean = -0.01, min = -1.49

In [66]:
# Inspect the data in the predictor variables

def plot_data(ind, data_x, data_y, aspect, title, color):
    
    ax[ind].set_title(title, fontsize=18)
    ax[ind].set_xlabel('Predictor Values', fontsize=14)
    ax[ind].set_ylabel('Ca Values', fontsize=12)
    ax[ind].set_aspect(aspect = aspect, adjustable='box')
    ax[ind].grid(True)
    ax[ind].scatter(data_x, data_y, color = color, alpha = 0.2, marker = 'o', edgecolors = 'black')

# set up the grid plot
fig, ax = plt.subplots(2, 3, figsize=(15, 20))
#fig.subplots_adjust(hspace = 0.5, wspace=.2)
ax = ax.ravel()

# select the predictor range (note this is influenced by the PCA below)
my_col = 20

X_sub = np.ravel(X[:,:my_col].reshape(-1,1))

# Ca 
plot_data(0, X_sub, np.repeat(Ca, my_col), 0.1, 'Ca vs. %d Predictors' % my_col, colors[0])
# P 
plot_data(1, X_sub, np.repeat(P, my_col), 0.1, 'P vs. %d Predictors' % my_col, colors[1])
#pH 
plot_data(2, X_sub, np.repeat(pH, my_col), 0.2, 'pH vs. %d Predictors' % my_col, colors[2])
#SOC 
plot_data(3, X_sub, np.repeat(SOC, my_col), 0.1, 'SOC vs. %d Predictors' % my_col, colors[3])
#Sand 
plot_data(4, X_sub, np.repeat(Sand, my_col), 0.35, 'Sand vs. %d Predictors' % my_col, colors[4])
# delete the last subplot
fig.delaxes(ax[5])


Which features have more impact?

There are over three thousand features in this data, with few rows. Thus, we have a large k but small n data set to work with. Perhaps there is a subset of features to focus on.

Below, we investigate two variations of PCA to explain variances over the features. We observe that the first 20 components explain increasing portions of the variance, however after 20 components, the subsequent ones don't really help. The first 70-80 features will explain ~100% of the variance.


In [68]:
# Linear PCA using all of the features
n_comp = feature_names.shape[0]
pca_lin = PCA(n_components = n_comp)
pca_lin.fit(X)
pca_lin_cumsum = np.cumsum(pca_lin.explained_variance_ratio_)

# Non-linear kernel RBF PCA using all of the features 
pca_kern = KernelPCA(n_components = n_comp, kernel = 'rbf')
pca_kern.fit(X)

# build the explained variance ratio list for pca_kern
explained_var_ratio_kern = []
for i in range(0, pca_kern.lambdas_.shape[0]):
    explained_var_ratio_kern.append(pca_kern.lambdas_[i]/sum(pca_kern.lambdas_))
pca_kern_cumsum = np.cumsum(np.asarray(explained_var_ratio_kern))

# Plot the Information Gain graph
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(pca_lin_cumsum, color = 'purple', marker = 'o', ms = 5, mfc = 'red', label = 'pca_lin')
ax.plot(pca_kern_cumsum, color = 'purple', marker = 'o', ms = 5, mfc = 'yellow', label = 'pca_kern')
plt.legend(loc='center left', bbox_to_anchor=(1, 0.91), shadow=False, scatterpoints=1)
fig.suptitle('Cummulative Information Gain', fontsize=18)
plt.xlabel('Number of Components', fontsize=14)
plt.ylabel('Cummulative Variance Ratio', fontsize=12)
plt.grid(True)
ax.set_xlim([0,30])
ax.set_ylim([0.5,1.0])

# Output variance fractions
print '\n-------------------------------------------'
print 'Fraction of the total variance in the training explained by first k components: \n'
for k in range(1,76): 
    print("%d \t %s \t %s \t %s" % (k, '{0:.2f}%'.format(pca_lin_cumsum[k-1] * 100), 
                                    '{0:.2f}%'.format(pca_kern_cumsum[k-1] * 100), feature_names[k-1]))


-------------------------------------------
Fraction of the total variance in the training explained by first k components: 

1 	 70.54% 	 66.91% 	 m749796
2 	 79.38% 	 75.72% 	 m749604
3 	 85.54% 	 82.10% 	 m749411
4 	 89.31% 	 85.88% 	 m749218
5 	 91.69% 	 88.83% 	 m749025
6 	 93.63% 	 90.85% 	 m748832
7 	 95.14% 	 92.57% 	 m748639
8 	 96.16% 	 94.10% 	 m748446
9 	 96.75% 	 95.11% 	 m748254
10 	 97.27% 	 95.74% 	 m748061
11 	 97.74% 	 96.29% 	 m747868
12 	 98.10% 	 96.76% 	 m747675
13 	 98.42% 	 97.14% 	 m747482
14 	 98.69% 	 97.49% 	 m747289
15 	 98.90% 	 97.77% 	 m747097
16 	 99.06% 	 98.00% 	 m746904
17 	 99.20% 	 98.21% 	 m746711
18 	 99.34% 	 98.40% 	 m746518
19 	 99.44% 	 98.55% 	 m746325
20 	 99.50% 	 98.69% 	 m746132
21 	 99.56% 	 98.80% 	 m745939
22 	 99.62% 	 98.90% 	 m745747
23 	 99.67% 	 98.99% 	 m745554
24 	 99.72% 	 99.07% 	 m745361
25 	 99.75% 	 99.14% 	 m745168
26 	 99.78% 	 99.20% 	 m744975
27 	 99.81% 	 99.26% 	 m744782
28 	 99.83% 	 99.31% 	 m744589
29 	 99.85% 	 99.36% 	 m744397
30 	 99.86% 	 99.40% 	 m744204
31 	 99.88% 	 99.43% 	 m744011
32 	 99.89% 	 99.46% 	 m743818
33 	 99.90% 	 99.49% 	 m743625
34 	 99.91% 	 99.52% 	 m743432
35 	 99.92% 	 99.54% 	 m74324
36 	 99.93% 	 99.57% 	 m743047
37 	 99.93% 	 99.59% 	 m742854
38 	 99.94% 	 99.61% 	 m742661
39 	 99.94% 	 99.63% 	 m742468
40 	 99.95% 	 99.65% 	 m742275
41 	 99.95% 	 99.67% 	 m742082
42 	 99.96% 	 99.69% 	 m74189
43 	 99.96% 	 99.70% 	 m741697
44 	 99.96% 	 99.71% 	 m741504
45 	 99.96% 	 99.73% 	 m741311
46 	 99.97% 	 99.74% 	 m741118
47 	 99.97% 	 99.75% 	 m740925
48 	 99.97% 	 99.76% 	 m740733
49 	 99.97% 	 99.77% 	 m74054
50 	 99.98% 	 99.78% 	 m740347
51 	 99.98% 	 99.79% 	 m740154
52 	 99.98% 	 99.80% 	 m739961
53 	 99.98% 	 99.80% 	 m739768
54 	 99.98% 	 99.81% 	 m739575
55 	 99.98% 	 99.82% 	 m739383
56 	 99.98% 	 99.83% 	 m73919
57 	 99.99% 	 99.83% 	 m738997
58 	 99.99% 	 99.84% 	 m738804
59 	 99.99% 	 99.84% 	 m738611
60 	 99.99% 	 99.85% 	 m738418
61 	 99.99% 	 99.85% 	 m738225
62 	 99.99% 	 99.86% 	 m738033
63 	 99.99% 	 99.86% 	 m73784
64 	 99.99% 	 99.87% 	 m737647
65 	 99.99% 	 99.87% 	 m737454
66 	 99.99% 	 99.88% 	 m737261
67 	 99.99% 	 99.88% 	 m737068
68 	 99.99% 	 99.88% 	 m736876
69 	 99.99% 	 99.89% 	 m736683
70 	 99.99% 	 99.89% 	 m73649
71 	 99.99% 	 99.89% 	 m736297
72 	 99.99% 	 99.90% 	 m736104
73 	 99.99% 	 99.90% 	 m735911
74 	 99.99% 	 99.90% 	 m735718
75 	 100.00% 	 99.90% 	 m735526

MODELING WORK ZONE BELOW


In [84]:
# Linear Regression with PCA combinations

y_pipelines_lin = []
y_scores_lin = []

start = time.time()
for ind, y in enumerate(y_vars):

    X_train, X_test, y_train, y_test = train_test_split(X_wDepth, y, test_size=0.33, random_state=42)
    
    # set up the train and test data
    print '\n----------', y_var_labels[ind]

    pca = PCA()
    linear = LinearRegression()
    steps = [('pca', pca), ('linear', linear)]
    pipeline = Pipeline(steps)

    parameters = dict(pca__n_components=list(range(20, 90, 10)),
                     linear__normalize=[True, False])

    cv = GridSearchCV(pipeline, param_grid=parameters, verbose=0)
    cv.fit(X_train, y_train)   

    print 'Cross_val_score: ', cross_val_score(cv, X_test, y_test)
    
    y_predictions = cv.predict(X_test)
    mse = mean_squared_error(y_test, y_predictions)
    print 'Explained variance score: ', explained_variance_score(y_test, y_predictions)
    print 'Mean absolute error: ', mean_absolute_error(y_test, y_predictions)
    print 'Mean squared error: ', mse
    print 'R2 score: ', r2_score(y_test, y_predictions)
    
    display(pd.DataFrame.from_dict(cv.cv_results_))
    
    # capture the best pipeline estimator and mse value
    y_pipelines_lin.append(cv.best_estimator_)
    y_scores_lin.append(mse)
    
print 'Completed in %0.2f sec' % (start-time.time())


---------- Ca
Cross_val_score:  [ 0.85570742  0.63792012  0.80330096]
Explained variance score:  0.901076165334
Mean absolute error:  0.196188379361
Mean squared error:  0.168774592688
R2 score:  0.90099366767
mean_fit_time mean_score_time mean_test_score mean_train_score param_linear__normalize param_pca__n_components params rank_test_score split0_test_score split0_train_score split1_test_score split1_train_score split2_test_score split2_train_score std_fit_time std_score_time std_test_score std_train_score
0 0.401595 0.016937 0.751867 0.825906 True 20 {u'pca__n_components': 20, u'linear__normalize... 13 0.785879 0.823166 0.727543 0.836301 0.742047 0.818251 0.080252 0.003579 0.024812 0.007619
1 0.292449 0.016768 0.809155 0.875621 True 30 {u'pca__n_components': 30, u'linear__normalize... 12 0.845905 0.865919 0.781084 0.889915 0.800332 0.871029 0.008462 0.000870 0.027196 0.010321
2 0.413034 0.026947 0.838997 0.913629 True 40 {u'pca__n_components': 40, u'linear__normalize... 10 0.893391 0.900660 0.776750 0.934486 0.846640 0.905741 0.032198 0.012370 0.047939 0.014894
3 0.392399 0.022573 0.857942 0.923122 True 50 {u'pca__n_components': 50, u'linear__normalize... 1 0.903522 0.916935 0.803975 0.939682 0.866154 0.912749 0.017331 0.006179 0.041065 0.011834
4 0.368343 0.022410 0.853537 0.927500 True 60 {u'pca__n_components': 60, u'linear__normalize... 3 0.899093 0.922126 0.810122 0.942066 0.851220 0.918309 0.034430 0.004476 0.036371 0.010417
5 0.347605 0.020352 0.849985 0.935038 True 70 {u'pca__n_components': 70, u'linear__normalize... 6 0.900830 0.930248 0.800939 0.944889 0.847989 0.929978 0.016688 0.000166 0.040818 0.006966
6 0.421688 0.023069 0.849196 0.941703 True 80 {u'pca__n_components': 80, u'linear__normalize... 7 0.906221 0.937466 0.789157 0.949431 0.851987 0.938212 0.017380 0.001076 0.047847 0.005473
7 0.301222 0.015382 0.751867 0.825906 False 20 {u'pca__n_components': 20, u'linear__normalize... 14 0.785879 0.823166 0.727543 0.836301 0.742047 0.818251 0.036415 0.000671 0.024812 0.007619
8 0.325893 0.016419 0.809155 0.875621 False 30 {u'pca__n_components': 30, u'linear__normalize... 11 0.845906 0.865919 0.781084 0.889915 0.800332 0.871029 0.012175 0.000476 0.027196 0.010321
9 0.451195 0.025117 0.839001 0.913628 False 40 {u'pca__n_components': 40, u'linear__normalize... 9 0.893389 0.900659 0.776744 0.934486 0.846659 0.905738 0.087783 0.010919 0.047942 0.014894
10 0.482947 0.020592 0.857938 0.923122 False 50 {u'pca__n_components': 50, u'linear__normalize... 2 0.903511 0.916937 0.803973 0.939682 0.866154 0.912749 0.065446 0.000751 0.041062 0.011834
11 0.437326 0.026386 0.853423 0.927471 False 60 {u'pca__n_components': 60, u'linear__normalize... 4 0.899137 0.922128 0.809907 0.942034 0.851048 0.918251 0.063638 0.006914 0.036478 0.010419
12 0.454451 0.023779 0.850031 0.935036 False 70 {u'pca__n_components': 70, u'linear__normalize... 5 0.900850 0.930238 0.801001 0.944883 0.848046 0.929988 0.026515 0.002409 0.040800 0.006963
13 0.445644 0.029473 0.848784 0.941826 False 80 {u'pca__n_components': 80, u'linear__normalize... 8 0.906874 0.937749 0.787414 0.949531 0.851838 0.938196 0.044929 0.009692 0.048833 0.005452
---------- P
Cross_val_score:  [ 0.16601529 -0.07910374  0.02768116]
Explained variance score:  0.0895600523212
Mean absolute error:  0.5352618264
Mean squared error:  1.10647335821
R2 score:  0.0891821398915
mean_fit_time mean_score_time mean_test_score mean_train_score param_linear__normalize param_pca__n_components params rank_test_score split0_test_score split0_train_score split1_test_score split1_train_score split2_test_score split2_train_score std_fit_time std_score_time std_test_score std_train_score
0 0.398007 0.019905 -0.051894 0.114146 True 20 {u'pca__n_components': 20, u'linear__normalize... 4 0.018079 0.133428 0.033473 0.088777 -0.207504 0.120232 0.082744 0.005006 0.110107 0.018730
1 0.293720 0.015602 -0.091704 0.143315 True 30 {u'pca__n_components': 30, u'linear__normalize... 5 0.020377 0.169673 0.045032 0.101407 -0.340954 0.158865 0.007554 0.000078 0.176364 0.029960
2 0.389901 0.018203 -0.110959 0.182868 True 40 {u'pca__n_components': 40, u'linear__normalize... 10 0.023842 0.206224 0.043404 0.143164 -0.400644 0.199216 0.033227 0.000919 0.204796 0.028220
3 0.457877 0.023460 -0.113389 0.255722 True 50 {u'pca__n_components': 50, u'linear__normalize... 13 -0.000942 0.301696 0.052708 0.202320 -0.392371 0.263151 0.090917 0.006886 0.198293 0.040909
4 0.455800 0.020258 -0.096064 0.297641 True 60 {u'pca__n_components': 60, u'linear__normalize... 7 -0.009222 0.346567 0.062305 0.247829 -0.341613 0.298526 0.039363 0.000397 0.175903 0.040314
5 0.395460 0.024339 -0.033347 0.355513 True 70 {u'pca__n_components': 70, u'linear__normalize... 1 0.050257 0.408086 0.159736 0.298802 -0.310358 0.359652 0.024229 0.003467 0.200729 0.044711
6 0.428809 0.024844 -0.110948 0.412695 True 80 {u'pca__n_components': 80, u'linear__normalize... 9 0.027658 0.460679 0.067044 0.371651 -0.428082 0.405754 0.008546 0.003195 0.224608 0.036675
7 0.320130 0.015826 -0.051894 0.114146 False 20 {u'pca__n_components': 20, u'linear__normalize... 3 0.018079 0.133428 0.033473 0.088777 -0.207504 0.120232 0.059182 0.001832 0.110107 0.018730
8 0.290308 0.015603 -0.091704 0.143315 False 30 {u'pca__n_components': 30, u'linear__normalize... 6 0.020377 0.169673 0.045031 0.101407 -0.340954 0.158865 0.004506 0.000116 0.176364 0.029960
9 0.489253 0.018448 -0.111010 0.182870 False 40 {u'pca__n_components': 40, u'linear__normalize... 11 0.023842 0.206226 0.043393 0.143165 -0.400789 0.199218 0.077873 0.001934 0.204862 0.028221
10 0.402547 0.021939 -0.113359 0.255721 False 50 {u'pca__n_components': 50, u'linear__normalize... 12 -0.000933 0.301693 0.052713 0.202320 -0.392293 0.263151 0.024878 0.004634 0.198260 0.040908
11 0.416457 0.021030 -0.096146 0.297048 False 60 {u'pca__n_components': 60, u'linear__normalize... 8 -0.009566 0.345376 0.059921 0.247490 -0.339129 0.298280 0.069836 0.000872 0.173978 0.039971
12 0.347005 0.020706 -0.033658 0.355659 False 70 {u'pca__n_components': 70, u'linear__normalize... 2 0.049498 0.408939 0.159181 0.298690 -0.309977 0.359348 0.008959 0.000295 0.200271 0.045085
13 0.533211 0.022799 -0.121338 0.414614 False 80 {u'pca__n_components': 80, u'linear__normalize... 14 0.024289 0.462132 0.064487 0.372969 -0.453355 0.408741 0.103923 0.001862 0.235118 0.036637
---------- pH
Cross_val_score:  [ 0.68826016  0.71926307  0.76570321]
Explained variance score:  0.799937498717
Mean absolute error:  0.30094291544
Mean squared error:  0.176772099465
R2 score:  0.799273781985
mean_fit_time mean_score_time mean_test_score mean_train_score param_linear__normalize param_pca__n_components params rank_test_score split0_test_score split0_train_score split1_test_score split1_train_score split2_test_score split2_train_score std_fit_time std_score_time std_test_score std_train_score
0 0.701983 0.026909 0.684171 0.720647 True 20 {u'pca__n_components': 20, u'linear__normalize... 14 0.646453 0.733411 0.712437 0.710280 0.693770 0.718250 0.171247 0.000568 0.027787 0.009594
1 0.459710 0.020405 0.733384 0.782674 True 30 {u'pca__n_components': 30, u'linear__normalize... 11 0.714661 0.788172 0.742067 0.786209 0.743498 0.773640 0.106891 0.003574 0.013278 0.006438
2 0.610304 0.019331 0.759927 0.808876 True 40 {u'pca__n_components': 40, u'linear__normalize... 8 0.747043 0.815274 0.760863 0.806183 0.771923 0.805171 0.140424 0.001415 0.010182 0.004543
3 0.457173 0.020900 0.757657 0.821223 True 50 {u'pca__n_components': 50, u'linear__normalize... 10 0.751396 0.823192 0.762175 0.814440 0.759423 0.826036 0.031502 0.001770 0.004576 0.004935
4 0.474770 0.029363 0.762740 0.840075 True 60 {u'pca__n_components': 60, u'linear__normalize... 5 0.748152 0.848737 0.786107 0.834763 0.754018 0.836724 0.072326 0.006740 0.016680 0.006177
5 0.564476 0.022850 0.767861 0.846745 True 70 {u'pca__n_components': 70, u'linear__normalize... 4 0.749647 0.859065 0.791295 0.837879 0.762711 0.843291 0.140697 0.000234 0.017393 0.008987
6 0.685873 0.032198 0.785268 0.865361 True 80 {u'pca__n_components': 80, u'linear__normalize... 1 0.760928 0.868712 0.817554 0.855661 0.777418 0.871709 0.127607 0.003770 0.023780 0.006967
7 0.563744 0.024616 0.684171 0.720647 False 20 {u'pca__n_components': 20, u'linear__normalize... 13 0.646453 0.733411 0.712437 0.710280 0.693770 0.718250 0.071561 0.010831 0.027787 0.009594
8 0.493350 0.018993 0.733384 0.782674 False 30 {u'pca__n_components': 30, u'linear__normalize... 12 0.714661 0.788172 0.742066 0.786209 0.743498 0.773640 0.039291 0.003280 0.013278 0.006438
9 0.669867 0.021422 0.759928 0.808878 False 40 {u'pca__n_components': 40, u'linear__normalize... 7 0.747048 0.815277 0.760854 0.806180 0.771933 0.805177 0.094120 0.004917 0.010184 0.004543
10 0.607884 0.021201 0.757657 0.821219 False 50 {u'pca__n_components': 50, u'linear__normalize... 9 0.751394 0.823193 0.762177 0.814440 0.759425 0.826025 0.089288 0.001730 0.004577 0.004931
11 0.447556 0.041380 0.762721 0.840135 False 60 {u'pca__n_components': 60, u'linear__normalize... 6 0.748366 0.848732 0.786207 0.834818 0.753647 0.836854 0.044462 0.016182 0.016730 0.006136
12 0.546687 0.031930 0.768089 0.846758 False 70 {u'pca__n_components': 70, u'linear__normalize... 3 0.749771 0.859039 0.791506 0.837917 0.763060 0.843317 0.056947 0.013150 0.017410 0.008960
13 0.591968 0.029392 0.785012 0.865390 False 80 {u'pca__n_components': 80, u'linear__normalize... 2 0.760769 0.868679 0.816720 0.855711 0.777642 0.871781 0.037755 0.006266 0.023435 0.006961
---------- SOC
Cross_val_score:  [ 0.87037411  0.89622083  0.85961808]
Explained variance score:  0.898629932712
Mean absolute error:  0.257032142328
Mean squared error:  0.154347468616
R2 score:  0.897618782823
mean_fit_time mean_score_time mean_test_score mean_train_score param_linear__normalize param_pca__n_components params rank_test_score split0_test_score split0_train_score split1_test_score split1_train_score split2_test_score split2_train_score std_fit_time std_score_time std_test_score std_train_score
0 0.399074 0.016594 0.799626 0.812817 True 20 {u'pca__n_components': 20, u'linear__normalize... 14 0.832424 0.798065 0.786214 0.820028 0.780114 0.820358 0.063428 0.003096 0.023369 0.010432
1 0.371319 0.017284 0.823940 0.846879 True 30 {u'pca__n_components': 30, u'linear__normalize... 11 0.835253 0.843558 0.823200 0.845433 0.813325 0.851647 0.019578 0.001353 0.008970 0.003457
2 0.456614 0.018377 0.832803 0.862331 True 40 {u'pca__n_components': 40, u'linear__normalize... 9 0.837140 0.857774 0.838184 0.862447 0.823068 0.866771 0.042116 0.001555 0.006890 0.003674
3 0.490796 0.022081 0.843454 0.886960 True 50 {u'pca__n_components': 50, u'linear__normalize... 8 0.849107 0.884587 0.854185 0.885183 0.827048 0.891110 0.088483 0.003310 0.011773 0.002944
4 0.562996 0.041530 0.866698 0.905370 True 60 {u'pca__n_components': 60, u'linear__normalize... 5 0.882216 0.900789 0.870770 0.906006 0.847047 0.909315 0.036247 0.011029 0.014647 0.003510
5 0.534162 0.040645 0.870927 0.919710 True 70 {u'pca__n_components': 70, u'linear__normalize... 4 0.889836 0.914927 0.869019 0.925610 0.853852 0.918592 0.099857 0.013325 0.014757 0.004432
6 0.708832 0.028850 0.881796 0.930048 True 80 {u'pca__n_components': 80, u'linear__normalize... 2 0.898598 0.923672 0.876698 0.938034 0.870026 0.928437 0.047880 0.007608 0.012211 0.005973
7 0.328411 0.017010 0.799626 0.812817 False 20 {u'pca__n_components': 20, u'linear__normalize... 13 0.832424 0.798065 0.786214 0.820028 0.780114 0.820358 0.011248 0.002965 0.023369 0.010432
8 0.324564 0.016928 0.823940 0.846879 False 30 {u'pca__n_components': 30, u'linear__normalize... 12 0.835253 0.843558 0.823200 0.845433 0.813325 0.851647 0.015036 0.001612 0.008970 0.003457
9 0.437030 0.018673 0.832803 0.862331 False 40 {u'pca__n_components': 40, u'linear__normalize... 10 0.837137 0.857774 0.838185 0.862447 0.823070 0.866772 0.051659 0.001621 0.006889 0.003675
10 0.467132 0.029230 0.843455 0.886960 False 50 {u'pca__n_components': 50, u'linear__normalize... 7 0.849106 0.884589 0.854183 0.885183 0.827054 0.891107 0.019858 0.009494 0.011770 0.002943
11 0.420701 0.021187 0.866605 0.905351 False 60 {u'pca__n_components': 60, u'linear__normalize... 6 0.882007 0.900656 0.870642 0.906101 0.847106 0.909295 0.019005 0.001170 0.014536 0.003566
12 0.460716 0.024483 0.871034 0.919729 False 70 {u'pca__n_components': 70, u'linear__normalize... 3 0.889924 0.914948 0.869230 0.925625 0.853876 0.918613 0.082493 0.004462 0.014777 0.004430
13 0.530572 0.030255 0.881927 0.930071 False 80 {u'pca__n_components': 80, u'linear__normalize... 1 0.898539 0.923689 0.876747 0.938036 0.870430 0.928487 0.064933 0.008048 0.012048 0.005963
---------- Sand
Cross_val_score:  [ 0.87066726  0.82473215  0.86466119]
Explained variance score:  0.883016553299
Mean absolute error:  0.23952072496
Mean squared error:  0.11549187919
R2 score:  0.882836536731
mean_fit_time mean_score_time mean_test_score mean_train_score param_linear__normalize param_pca__n_components params rank_test_score split0_test_score split0_train_score split1_test_score split1_train_score split2_test_score split2_train_score std_fit_time std_score_time std_test_score std_train_score
0 0.426531 0.023525 0.717685 0.751043 True 20 {u'pca__n_components': 20, u'linear__normalize... 14 0.705694 0.763371 0.724223 0.749680 0.723185 0.740078 0.071271 0.010680 0.008506 0.009558
1 0.333824 0.016410 0.765231 0.807077 True 30 {u'pca__n_components': 30, u'linear__normalize... 11 0.768001 0.806540 0.738767 0.818617 0.788916 0.796075 0.015012 0.000762 0.020554 0.009211
2 0.439170 0.029930 0.805838 0.852251 True 40 {u'pca__n_components': 40, u'linear__normalize... 10 0.794451 0.860239 0.785730 0.858806 0.837376 0.837707 0.026046 0.012110 0.022562 0.010300
3 0.443421 0.053730 0.818983 0.871655 True 50 {u'pca__n_components': 50, u'linear__normalize... 8 0.810215 0.874381 0.802672 0.877151 0.844096 0.863431 0.011374 0.048742 0.018006 0.005924
4 0.389781 0.020891 0.825129 0.881398 True 60 {u'pca__n_components': 60, u'linear__normalize... 6 0.822379 0.884167 0.803426 0.886319 0.849592 0.873707 0.009026 0.002292 0.018935 0.005509
5 0.391120 0.022294 0.834415 0.889789 True 70 {u'pca__n_components': 70, u'linear__normalize... 4 0.832762 0.890024 0.804232 0.899813 0.866257 0.879530 0.027148 0.000451 0.025332 0.008282
6 0.472420 0.023430 0.844644 0.896479 True 80 {u'pca__n_components': 80, u'linear__normalize... 1 0.849223 0.896167 0.817790 0.905128 0.866902 0.888143 0.026895 0.000793 0.020298 0.006938
7 0.303684 0.016479 0.717685 0.751043 False 20 {u'pca__n_components': 20, u'linear__normalize... 13 0.705694 0.763371 0.724223 0.749680 0.723185 0.740078 0.007885 0.001943 0.008506 0.009558
8 0.358066 0.015952 0.765231 0.807077 False 30 {u'pca__n_components': 30, u'linear__normalize... 12 0.768001 0.806540 0.738767 0.818617 0.788915 0.796075 0.038798 0.000164 0.020554 0.009211
9 0.396145 0.021046 0.805840 0.852251 False 40 {u'pca__n_components': 40, u'linear__normalize... 9 0.794465 0.860240 0.785731 0.858805 0.837369 0.837708 0.002398 0.004244 0.022556 0.010300
10 0.508582 0.018919 0.818983 0.871656 False 50 {u'pca__n_components': 50, u'linear__normalize... 7 0.810215 0.874382 0.802675 0.877154 0.844093 0.863433 0.060894 0.001111 0.018004 0.005924
11 0.359351 0.020233 0.825443 0.881443 False 60 {u'pca__n_components': 60, u'linear__normalize... 5 0.823527 0.884384 0.803236 0.886280 0.849573 0.873666 0.004271 0.000648 0.018953 0.005554
12 0.401505 0.021691 0.834488 0.889710 False 70 {u'pca__n_components': 70, u'linear__normalize... 3 0.832921 0.889896 0.803970 0.899803 0.866578 0.879431 0.024306 0.000868 0.025567 0.008318
13 0.461868 0.022603 0.844411 0.896472 False 80 {u'pca__n_components': 80, u'linear__normalize... 2 0.849006 0.896232 0.817251 0.905023 0.866958 0.888159 0.023773 0.001191 0.020539 0.006887
Completed in -242.73 sec

In [85]:
print len(y_pipelines_lin)
print y_scores_lin


5
[0.16877459268842748, 1.1064733582082102, 0.17677209946462416, 0.1543474686162602, 0.11549187918978619]

In [86]:
# Linear Regression with PCA and SelectKBest

y_pipelines_linsel = []
y_scores_linsel = []

start = time.time()
for ind, y in enumerate(y_vars):
    
    X_train, X_test, y_train, y_test = train_test_split(X_wDepth, y, test_size=0.33, random_state=42)
    
    # set up the train and test data
    print '\n----------', y_var_labels[ind]

    pca = PCA(n_components=2)
    selection = SelectKBest(k=1)
    combined_features = FeatureUnion([('pca', pca), ('univ_select', selection)])
    linear = LinearRegression()
    
    steps = [('features', combined_features), ('linear', linear)]
    pipeline = Pipeline(steps)

    parameters = dict(features__pca__n_components=list(range(20, 90, 10)),
                  features__univ_select__k=[1, 2, 3],
                    linear__normalize=[True, False])

    cv = GridSearchCV(pipeline, param_grid=parameters, verbose=0)
    cv.fit(X_train, y_train)   

    print 'Cross_val_score: ', cross_val_score(cv, X_test, y_test)
    
    y_predictions = cv.predict(X_test)
    mse = mean_squared_error(y_test, y_predictions)
    print 'Explained variance score: ', explained_variance_score(y_test, y_predictions)
    print 'Mean absolute error: ', mean_absolute_error(y_test, y_predictions)
    print 'Mean squared error: ', mse
    print 'R2 score: ', r2_score(y_test, y_predictions)
    
    display(pd.DataFrame.from_dict(cv.cv_results_))
    
    # capture the best pipeline estimator and mse value
    y_pipelines_linsel.append(cv.best_estimator_)
    y_scores_linsel.append(mse)
    
print 'Completed in %0.2f sec' % (start-time.time())


---------- Ca
Cross_val_score:  [ 0.85955475  0.60303506  0.81811134]
Explained variance score:  0.901317065989
Mean absolute error:  0.19647374878
Mean squared error:  0.168426718485
R2 score:  0.901197737183
mean_fit_time mean_score_time mean_test_score mean_train_score param_features__pca__n_components param_features__univ_select__k param_linear__normalize params rank_test_score split0_test_score split0_train_score split1_test_score split1_train_score split2_test_score split2_train_score std_fit_time std_score_time std_test_score std_train_score
0 0.539103 0.026988 0.752042 0.829107 20 1 True {u'features__pca__n_components': 20, u'linear_... 41 0.788843 0.832023 0.726700 0.836373 0.740440 0.818926 0.108656 0.008613 0.026669 0.007415
1 0.604635 0.027206 0.752042 0.829107 20 1 False {u'features__pca__n_components': 20, u'linear_... 42 0.788843 0.832023 0.726700 0.836373 0.740440 0.818926 0.046825 0.005809 0.026669 0.007415
2 0.592394 0.021880 0.756330 0.841899 20 2 True {u'features__pca__n_components': 20, u'linear_... 39 0.788653 0.832152 0.740763 0.853116 0.739450 0.840429 0.045160 0.004012 0.022906 0.008621
3 0.579496 0.022891 0.756330 0.841899 20 2 False {u'features__pca__n_components': 20, u'linear_... 40 0.788653 0.832152 0.740763 0.853116 0.739450 0.840429 0.115812 0.000615 0.022906 0.008621
4 0.528474 0.021775 0.759498 0.846282 20 3 True {u'features__pca__n_components': 20, u'linear_... 38 0.807484 0.840276 0.733925 0.854120 0.736901 0.844450 0.099467 0.002653 0.034018 0.005798
5 0.452069 0.021932 0.759498 0.846282 20 3 False {u'features__pca__n_components': 20, u'linear_... 37 0.807484 0.840277 0.733925 0.854120 0.736901 0.844450 0.035102 0.002728 0.034018 0.005798
6 0.503984 0.020971 0.822455 0.883166 30 1 True {u'features__pca__n_components': 30, u'linear_... 33 0.872791 0.873698 0.781452 0.897798 0.812926 0.878002 0.019615 0.000646 0.037904 0.010495
7 0.525240 0.024944 0.822455 0.883166 30 1 False {u'features__pca__n_components': 30, u'linear_... 34 0.872791 0.873698 0.781452 0.897798 0.812926 0.878002 0.075887 0.002825 0.037904 0.010495
8 0.689936 0.039335 0.823143 0.891287 30 2 True {u'features__pca__n_components': 30, u'linear_... 32 0.869171 0.875419 0.780098 0.917019 0.819981 0.881421 0.178154 0.017534 0.036444 0.018360
9 0.614220 0.021543 0.823143 0.891287 30 2 False {u'features__pca__n_components': 30, u'linear_... 31 0.869171 0.875419 0.780098 0.917019 0.819981 0.881421 0.020998 0.001582 0.036444 0.018360
10 0.632997 0.040475 0.819006 0.894127 30 3 True {u'features__pca__n_components': 30, u'linear_... 35 0.871962 0.876598 0.764386 0.923123 0.820466 0.882660 0.098059 0.013386 0.043944 0.020652
11 0.585624 0.029730 0.819006 0.894127 30 3 False {u'features__pca__n_components': 30, u'linear_... 36 0.871962 0.876598 0.764384 0.923123 0.820466 0.882660 0.114507 0.007714 0.043945 0.020652
12 0.720528 0.023914 0.840391 0.914103 40 1 True {u'features__pca__n_components': 40, u'linear_... 30 0.897578 0.902073 0.776721 0.934485 0.846652 0.905752 0.178621 0.001352 0.049554 0.014490
13 0.593216 0.022713 0.840393 0.914103 40 1 False {u'features__pca__n_components': 40, u'linear_... 29 0.897579 0.902073 0.776731 0.934486 0.846647 0.905751 0.076715 0.001324 0.049549 0.014491
14 0.603689 0.024769 0.841395 0.914362 40 2 True {u'features__pca__n_components': 40, u'linear_... 26 0.895196 0.902306 0.777508 0.934580 0.851274 0.906200 0.041078 0.003477 0.048565 0.014385
15 0.667583 0.026451 0.841396 0.914363 40 2 False {u'features__pca__n_components': 40, u'linear_... 25 0.895196 0.902306 0.777508 0.934581 0.851277 0.906203 0.055578 0.001631 0.048566 0.014384
16 0.727962 0.026950 0.840735 0.914650 40 3 True {u'features__pca__n_components': 40, u'linear_... 27 0.896954 0.902639 0.778296 0.934827 0.846738 0.906484 0.110818 0.004085 0.048643 0.014354
17 0.712662 0.029420 0.840735 0.914650 40 3 False {u'features__pca__n_components': 40, u'linear_... 28 0.896954 0.902639 0.778303 0.934827 0.846731 0.906483 0.100488 0.000828 0.048639 0.014354
18 0.755150 0.027293 0.857615 0.923408 50 1 True {u'features__pca__n_components': 50, u'linear_... 1 0.902955 0.917546 0.803933 0.939915 0.865783 0.912763 0.116676 0.004190 0.040848 0.011834
19 0.620018 0.027487 0.857613 0.923408 50 1 False {u'features__pca__n_components': 50, u'linear_... 2 0.902956 0.917546 0.803935 0.939915 0.865772 0.912762 0.055128 0.004705 0.040847 0.011835
20 0.596315 0.026770 0.855246 0.924307 50 2 True {u'features__pca__n_components': 50, u'linear_... 3 0.898507 0.918196 0.803933 0.939915 0.863129 0.914811 0.035642 0.003127 0.039021 0.011123
21 0.615047 0.026151 0.855245 0.924308 50 2 False {u'features__pca__n_components': 50, u'linear_... 4 0.898507 0.918196 0.803932 0.939915 0.863127 0.914813 0.049764 0.004060 0.039022 0.011122
22 0.802325 0.032247 0.854666 0.924771 50 3 True {u'features__pca__n_components': 50, u'linear_... 5 0.898369 0.918504 0.803945 0.939915 0.861514 0.915893 0.177967 0.006298 0.038863 0.010762
23 0.762000 0.025096 0.854659 0.924769 50 3 False {u'features__pca__n_components': 50, u'linear_... 6 0.898370 0.918505 0.803940 0.939915 0.861498 0.915886 0.081498 0.001835 0.038865 0.010763
24 0.517741 0.024029 0.852391 0.927792 60 1 True {u'features__pca__n_components': 60, u'linear_... 9 0.898319 0.922786 0.807300 0.942327 0.851374 0.918262 0.022135 0.000940 0.037177 0.010443
25 0.545551 0.024418 0.852549 0.927808 60 1 False {u'features__pca__n_components': 60, u'linear_... 7 0.898389 0.922801 0.807266 0.942320 0.851812 0.918302 0.039676 0.000083 0.037216 0.010425
26 0.643192 0.033595 0.852315 0.928000 60 2 True {u'features__pca__n_components': 60, u'linear_... 10 0.900963 0.923203 0.805780 0.942325 0.850015 0.918473 0.104336 0.002541 0.038904 0.010311
27 0.596503 0.039021 0.852439 0.927994 60 2 False {u'features__pca__n_components': 60, u'linear_... 8 0.900974 0.923202 0.805955 0.942334 0.850201 0.918447 0.082178 0.010859 0.038836 0.010324
28 0.610975 0.037933 0.848354 0.928860 60 3 True {u'features__pca__n_components': 60, u'linear_... 12 0.900954 0.923366 0.809849 0.942410 0.834054 0.920804 0.048030 0.011078 0.038553 0.009638
29 0.594453 0.026549 0.848561 0.928826 60 3 False {u'features__pca__n_components': 60, u'linear_... 11 0.900868 0.923292 0.809795 0.942423 0.834818 0.920762 0.080564 0.001838 0.038439 0.009670
30 0.595763 0.031590 0.847591 0.935700 70 1 True {u'features__pca__n_components': 70, u'linear_... 15 0.902088 0.930583 0.800391 0.944881 0.840082 0.931635 0.053271 0.002515 0.041868 0.006506
31 0.538564 0.025456 0.847196 0.935740 70 1 False {u'features__pca__n_components': 70, u'linear_... 16 0.902066 0.930589 0.799344 0.944949 0.839965 0.931682 0.057103 0.000877 0.042259 0.006527
32 0.503076 0.033897 0.843672 0.936248 70 2 True {u'features__pca__n_components': 70, u'linear_... 17 0.902182 0.931289 0.791164 0.945232 0.837444 0.932222 0.015748 0.005204 0.045550 0.006364
33 0.525525 0.028135 0.843447 0.936234 70 2 False {u'features__pca__n_components': 70, u'linear_... 19 0.902191 0.931290 0.790455 0.945165 0.837469 0.932245 0.021072 0.002296 0.045826 0.006328
34 0.519668 0.030298 0.842425 0.936410 70 3 True {u'features__pca__n_components': 70, u'linear_... 23 0.902298 0.931374 0.790882 0.945254 0.833863 0.932603 0.008360 0.004603 0.045900 0.006273
35 0.568633 0.032991 0.842254 0.936408 70 3 False {u'features__pca__n_components': 70, u'linear_... 24 0.902278 0.931265 0.790605 0.945305 0.833646 0.932655 0.035905 0.009279 0.046009 0.006316
36 0.751007 0.029718 0.847955 0.942405 80 1 True {u'features__pca__n_components': 80, u'linear_... 13 0.908429 0.938013 0.789211 0.949734 0.845989 0.939469 0.032160 0.004364 0.048706 0.005216
37 0.809686 0.032912 0.847792 0.942389 80 1 False {u'features__pca__n_components': 80, u'linear_... 14 0.908252 0.938088 0.789128 0.949631 0.845763 0.939449 0.120121 0.005055 0.048669 0.005151
38 0.668799 0.027097 0.843628 0.942660 80 2 True {u'features__pca__n_components': 80, u'linear_... 18 0.908377 0.938062 0.777541 0.950057 0.844713 0.939860 0.064891 0.000548 0.053436 0.005282
39 0.629298 0.033938 0.843016 0.942668 80 2 False {u'features__pca__n_components': 80, u'linear_... 21 0.908295 0.938076 0.776339 0.950133 0.844161 0.939795 0.018010 0.008392 0.053894 0.005325
40 0.892139 0.037772 0.842734 0.942825 80 3 True {u'features__pca__n_components': 80, u'linear_... 22 0.907911 0.938059 0.773845 0.950303 0.846194 0.940112 0.128831 0.012391 0.054805 0.005354
41 1.227470 0.057133 0.843377 0.942851 80 3 False {u'features__pca__n_components': 80, u'linear_... 20 0.907878 0.938047 0.775279 0.950361 0.846725 0.940144 0.174541 0.030172 0.054202 0.005379
---------- P
Cross_val_score:  [ 0.16251155 -0.03036356  0.02650919]
Explained variance score:  0.0944525895806
Mean absolute error:  0.529338262902
Mean squared error:  1.10076421175
R2 score:  0.0938817492596
mean_fit_time mean_score_time mean_test_score mean_train_score param_features__pca__n_components param_features__univ_select__k param_linear__normalize params rank_test_score split0_test_score split0_train_score split1_test_score split1_train_score split2_test_score split2_train_score std_fit_time std_score_time std_test_score std_train_score
0 0.455604 0.022077 -0.055244 0.123904 20 1 True {u'features__pca__n_components': 20, u'linear_... 7 0.016400 0.161322 0.038001 0.089139 -0.220411 0.121250 0.023503 0.002379 0.117011 0.029528
1 0.431819 0.022018 -0.055244 0.123904 20 1 False {u'features__pca__n_components': 20, u'linear_... 8 0.016400 0.161322 0.038001 0.089139 -0.220411 0.121250 0.027850 0.001538 0.117011 0.029528
2 0.409718 0.023444 -0.101066 0.136045 20 2 True {u'features__pca__n_components': 20, u'linear_... 18 0.015288 0.161533 0.047993 0.090671 -0.366929 0.155931 0.006436 0.001358 0.188286 0.032166
3 0.434585 0.023096 -0.101066 0.136045 20 2 False {u'features__pca__n_components': 20, u'linear_... 17 0.015288 0.161533 0.047993 0.090671 -0.366929 0.155931 0.017884 0.001982 0.188286 0.032166
4 0.428819 0.022489 -0.104515 0.137724 20 3 True {u'features__pca__n_components': 20, u'linear_... 24 0.015676 0.162036 0.050256 0.095059 -0.379943 0.156077 0.004762 0.001125 0.195080 0.030267
5 0.470618 0.021617 -0.104515 0.137724 20 3 False {u'features__pca__n_components': 20, u'linear_... 23 0.015676 0.162036 0.050256 0.095059 -0.379943 0.156077 0.051558 0.001277 0.195080 0.030267
6 0.446046 0.025402 -0.094627 0.151383 30 1 True {u'features__pca__n_components': 30, u'linear_... 13 0.019094 0.188323 0.029969 0.104768 -0.333386 0.161057 0.015575 0.003476 0.168723 0.034790
7 0.538472 0.028034 -0.094627 0.151383 30 1 False {u'features__pca__n_components': 30, u'linear_... 14 0.019094 0.188323 0.029969 0.104768 -0.333386 0.161057 0.066348 0.007351 0.168723 0.034790
8 0.454721 0.030642 -0.103313 0.161089 30 2 True {u'features__pca__n_components': 30, u'linear_... 22 0.012466 0.194450 0.056026 0.108772 -0.378879 0.180045 0.028394 0.012229 0.195477 0.037458
9 0.575994 0.025420 -0.103313 0.161089 30 2 False {u'features__pca__n_components': 30, u'linear_... 21 0.012466 0.194449 0.056026 0.108772 -0.378879 0.180045 0.070110 0.004568 0.195477 0.037458
10 0.496535 0.023393 -0.119457 0.165427 30 3 True {u'features__pca__n_components': 30, u'linear_... 27 0.021777 0.200712 0.053387 0.113771 -0.434082 0.181797 0.071138 0.001690 0.222633 0.037334
11 0.409199 0.021490 -0.119457 0.165427 30 3 False {u'features__pca__n_components': 30, u'linear_... 28 0.021777 0.200712 0.053387 0.113771 -0.434082 0.181797 0.010212 0.000284 0.222633 0.037334
12 0.483537 0.022777 -0.103206 0.185210 40 1 True {u'features__pca__n_components': 40, u'linear_... 19 0.024184 0.206230 0.046647 0.146026 -0.380943 0.203374 0.008139 0.000324 0.196414 0.027732
13 0.500499 0.022700 -0.103207 0.185208 40 1 False {u'features__pca__n_components': 40, u'linear_... 20 0.024181 0.206230 0.046647 0.146021 -0.380943 0.203373 0.016988 0.000126 0.196413 0.027734
14 0.499758 0.026124 -0.138904 0.200041 40 2 True {u'features__pca__n_components': 40, u'linear_... 30 0.021176 0.219848 0.011761 0.155941 -0.450269 0.224333 0.016772 0.001525 0.219989 0.031237
15 0.548157 0.023411 -0.138939 0.200043 40 2 False {u'features__pca__n_components': 40, u'linear_... 31 0.021178 0.219848 0.011754 0.155939 -0.450370 0.224341 0.077087 0.000306 0.220035 0.031240
16 0.587155 0.025776 -0.150940 0.204666 40 3 True {u'features__pca__n_components': 40, u'linear_... 38 0.020684 0.224117 -0.002015 0.165424 -0.472153 0.224456 0.055801 0.002799 0.227102 0.027749
17 0.509973 0.023603 -0.150927 0.204659 40 3 False {u'features__pca__n_components': 40, u'linear_... 37 0.020691 0.224095 -0.001990 0.165427 -0.472147 0.224456 0.025480 0.000875 0.227106 0.027742
18 0.519296 0.026681 -0.114216 0.255872 50 1 True {u'features__pca__n_components': 50, u'linear_... 25 -0.001931 0.301734 0.053438 0.202325 -0.394591 0.263558 0.015180 0.001361 0.199350 0.040946
19 0.581832 0.026332 -0.114236 0.255879 50 1 False {u'features__pca__n_components': 50, u'linear_... 26 -0.001964 0.301748 0.053405 0.202329 -0.394585 0.263559 0.080148 0.001510 0.199331 0.040949
20 0.522491 0.027206 -0.142347 0.259874 50 2 True {u'features__pca__n_components': 50, u'linear_... 35 -0.000108 0.301971 0.036789 0.204701 -0.464273 0.272950 0.028234 0.004139 0.227914 0.040773
21 0.508995 0.024721 -0.142352 0.259872 50 2 False {u'features__pca__n_components': 50, u'linear_... 36 -0.000099 0.301962 0.036758 0.204706 -0.464267 0.272948 0.015752 0.000466 0.227906 0.040767
22 0.507940 0.025197 -0.141815 0.263464 50 3 True {u'features__pca__n_components': 50, u'linear_... 32 -0.012600 0.307997 0.029104 0.209031 -0.442451 0.273364 0.023790 0.000982 0.213057 0.041005
23 0.502831 0.024325 -0.141831 0.263467 50 3 False {u'features__pca__n_components': 50, u'linear_... 33 -0.012597 0.307995 0.029048 0.209043 -0.442443 0.273364 0.006700 0.000503 0.213040 0.040999
24 0.500483 0.025116 -0.097808 0.308089 60 1 True {u'features__pca__n_components': 60, u'linear_... 16 -0.025428 0.376003 0.061710 0.248719 -0.329987 0.299545 0.072069 0.000359 0.167832 0.052313
25 0.522354 0.028964 -0.097461 0.308443 60 1 False {u'features__pca__n_components': 60, u'linear_... 15 -0.025999 0.377080 0.063012 0.248584 -0.329673 0.299666 0.058284 0.003584 0.168019 0.052824
26 0.560629 0.028651 -0.079406 0.315215 60 2 True {u'features__pca__n_components': 60, u'linear_... 10 -0.016677 0.380495 0.066754 0.250370 -0.288539 0.314779 0.067468 0.004244 0.151614 0.053124
27 0.471231 0.028366 -0.078707 0.315680 60 2 False {u'features__pca__n_components': 60, u'linear_... 9 -0.013260 0.380746 0.066552 0.250947 -0.289668 0.315347 0.013181 0.003345 0.152550 0.052991
28 0.461863 0.026099 -0.083381 0.316342 60 3 True {u'features__pca__n_components': 60, u'linear_... 12 -0.023034 0.383191 0.064202 0.250843 -0.291544 0.314990 0.006391 0.000198 0.151305 0.054039
29 0.478799 0.026645 -0.083030 0.316519 60 3 False {u'features__pca__n_components': 60, u'linear_... 11 -0.022826 0.382873 0.064127 0.250950 -0.290625 0.315733 0.025753 0.000968 0.150887 0.053860
30 0.487834 0.027268 -0.040256 0.369828 70 1 True {u'features__pca__n_components': 70, u'linear_... 4 0.014722 0.444990 0.168962 0.304888 -0.304666 0.359606 0.017281 0.000450 0.197119 0.057651
31 0.528503 0.028850 -0.041355 0.369900 70 1 False {u'features__pca__n_components': 70, u'linear_... 5 0.015248 0.445101 0.168856 0.305054 -0.308389 0.359546 0.070474 0.000831 0.198796 0.057641
32 0.731406 0.031201 -0.036778 0.371842 70 2 True {u'features__pca__n_components': 70, u'linear_... 2 0.013016 0.444949 0.172128 0.310500 -0.295670 0.360075 0.121273 0.002563 0.194088 0.055516
33 0.615494 0.031165 -0.035555 0.371871 70 2 False {u'features__pca__n_components': 70, u'linear_... 1 0.013609 0.444780 0.172705 0.310547 -0.293168 0.360285 0.038809 0.005538 0.193234 0.055410
34 0.617304 0.032364 -0.039605 0.372880 70 3 True {u'features__pca__n_components': 70, u'linear_... 3 0.017417 0.447266 0.166148 0.311577 -0.302600 0.359798 0.134283 0.001784 0.195462 0.056162
35 0.585116 0.033060 -0.042037 0.372892 70 3 False {u'features__pca__n_components': 70, u'linear_... 6 0.016960 0.446515 0.166655 0.311626 -0.309954 0.360534 0.059948 0.003866 0.198891 0.055757
36 0.594623 0.035681 -0.138568 0.418606 80 1 True {u'features__pca__n_components': 80, u'linear_... 29 0.027985 0.472555 0.025271 0.377655 -0.469605 0.405606 0.049609 0.005157 0.233855 0.039818
37 0.736642 0.042960 -0.142233 0.418861 80 1 False {u'features__pca__n_components': 80, u'linear_... 34 0.028364 0.472456 0.023994 0.377719 -0.479719 0.406408 0.058834 0.008016 0.238414 0.039666
38 0.784370 0.039634 -0.167753 0.420753 80 2 True {u'features__pca__n_components': 80, u'linear_... 39 0.032776 0.475370 0.031741 0.378888 -0.568552 0.407999 0.132305 0.005985 0.283134 0.040408
39 0.644676 0.035321 -0.171190 0.421306 80 2 False {u'features__pca__n_components': 80, u'linear_... 42 0.032741 0.475327 0.031153 0.379371 -0.578256 0.409220 0.131172 0.007964 0.287561 0.040095
40 0.679356 0.028644 -0.169459 0.423026 80 3 True {u'features__pca__n_components': 80, u'linear_... 40 0.037307 0.475454 0.032448 0.380544 -0.578932 0.413080 0.016961 0.000906 0.289268 0.039380
41 0.550567 0.029679 -0.170369 0.423140 80 3 False {u'features__pca__n_components': 80, u'linear_... 41 0.038140 0.475394 0.033708 0.380349 -0.583763 0.413677 0.012676 0.001139 0.292036 0.039375
---------- pH
Cross_val_score:  [ 0.73217844  0.75485549  0.76651478]
Explained variance score:  0.797277374776
Mean absolute error:  0.303479467731
Mean squared error:  0.178771031117
R2 score:  0.797003978142
mean_fit_time mean_score_time mean_test_score mean_train_score param_features__pca__n_components param_features__univ_select__k param_linear__normalize params rank_test_score split0_test_score split0_train_score split1_test_score split1_train_score split2_test_score split2_train_score std_fit_time std_score_time std_test_score std_train_score
0 0.526293 0.024599 0.684262 0.721143 20 1 True {u'features__pca__n_components': 20, u'linear_... 37 0.646707 0.734460 0.712128 0.710383 0.694097 0.718587 0.057334 0.002543 0.027606 0.009994
1 0.539544 0.023279 0.684262 0.721143 20 1 False {u'features__pca__n_components': 20, u'linear_... 38 0.646707 0.734460 0.712128 0.710383 0.694097 0.718587 0.094308 0.002616 0.027606 0.009994
2 0.460707 0.028236 0.683038 0.722121 20 2 True {u'features__pca__n_components': 20, u'linear_... 41 0.644830 0.734736 0.710619 0.710800 0.693813 0.720827 0.010052 0.005969 0.027925 0.009815
3 0.480729 0.022917 0.683038 0.722121 20 2 False {u'features__pca__n_components': 20, u'linear_... 42 0.644830 0.734736 0.710619 0.710800 0.693813 0.720827 0.043582 0.001709 0.027925 0.009815
4 0.431968 0.021229 0.683205 0.727116 20 3 True {u'features__pca__n_components': 20, u'linear_... 39 0.626677 0.738249 0.712982 0.713573 0.710174 0.729525 0.011053 0.000861 0.040065 0.010217
5 0.507374 0.022569 0.683205 0.727116 20 3 False {u'features__pca__n_components': 20, u'linear_... 40 0.626677 0.738249 0.712982 0.713573 0.710174 0.729525 0.104224 0.001374 0.040065 0.010217
6 0.472568 0.022878 0.734785 0.783162 30 1 True {u'features__pca__n_components': 30, u'linear_... 31 0.714870 0.788666 0.745455 0.787138 0.744108 0.773681 0.033538 0.001100 0.014120 0.006733
7 0.469445 0.022558 0.734785 0.783161 30 1 False {u'features__pca__n_components': 30, u'linear_... 32 0.714870 0.788665 0.745455 0.787138 0.744108 0.773681 0.020284 0.000640 0.014120 0.006732
8 0.468389 0.022907 0.732791 0.785814 30 2 True {u'features__pca__n_components': 30, u'linear_... 36 0.709503 0.791493 0.747498 0.787346 0.741464 0.778603 0.026280 0.001372 0.016682 0.005373
9 0.457075 0.022274 0.732791 0.785814 30 2 False {u'features__pca__n_components': 30, u'linear_... 35 0.709503 0.791494 0.747498 0.787346 0.741464 0.778603 0.018070 0.000878 0.016682 0.005373
10 0.469478 0.026212 0.733746 0.788373 30 3 True {u'features__pca__n_components': 30, u'linear_... 33 0.701822 0.792944 0.747429 0.787365 0.752109 0.784810 0.023823 0.002117 0.022697 0.003396
11 0.480810 0.024434 0.733746 0.788373 30 3 False {u'features__pca__n_components': 30, u'linear_... 34 0.701822 0.792944 0.747429 0.787365 0.752109 0.784810 0.030714 0.000672 0.022697 0.003396
12 0.552060 0.023433 0.757842 0.809165 40 1 True {u'features__pca__n_components': 40, u'linear_... 22 0.744996 0.815522 0.757372 0.806712 0.771208 0.805260 0.017807 0.000347 0.010710 0.004534
13 0.531845 0.027364 0.757842 0.809167 40 1 False {u'features__pca__n_components': 40, u'linear_... 21 0.745000 0.815522 0.757362 0.806709 0.771214 0.805270 0.025327 0.001415 0.010711 0.004532
14 0.561854 0.025228 0.757123 0.811713 40 2 True {u'features__pca__n_components': 40, u'linear_... 24 0.741505 0.818124 0.759653 0.807928 0.770270 0.809086 0.029783 0.001486 0.011882 0.004558
15 0.760030 0.030268 0.757124 0.811720 40 2 False {u'features__pca__n_components': 40, u'linear_... 23 0.741505 0.818125 0.759650 0.807925 0.770278 0.809110 0.154612 0.003096 0.011885 0.004555
16 0.734238 0.028781 0.758357 0.813087 40 3 True {u'features__pca__n_components': 40, u'linear_... 20 0.737968 0.819561 0.759587 0.807944 0.777594 0.811756 0.137146 0.003383 0.016206 0.004835
17 0.589614 0.026544 0.758357 0.813086 40 3 False {u'features__pca__n_components': 40, u'linear_... 19 0.737966 0.819561 0.759589 0.807944 0.777594 0.811754 0.036824 0.000862 0.016207 0.004835
18 0.584386 0.027880 0.752692 0.824531 50 1 True {u'features__pca__n_components': 50, u'linear_... 30 0.751157 0.823246 0.749385 0.823805 0.757540 0.826541 0.006362 0.004994 0.003500 0.001440
19 0.555195 0.025975 0.752695 0.824530 50 1 False {u'features__pca__n_components': 50, u'linear_... 29 0.751158 0.823244 0.749392 0.823805 0.757540 0.826541 0.013893 0.001989 0.003498 0.001440
20 0.550402 0.024755 0.753146 0.825391 50 2 True {u'features__pca__n_components': 50, u'linear_... 27 0.750333 0.825188 0.752192 0.824422 0.756923 0.826564 0.004326 0.000569 0.002774 0.000886
21 0.555799 0.028959 0.753141 0.825390 50 2 False {u'features__pca__n_components': 50, u'linear_... 28 0.750334 0.825189 0.752182 0.824424 0.756919 0.826557 0.029637 0.004286 0.002773 0.000882
22 0.558297 0.029979 0.756357 0.826397 50 3 True {u'features__pca__n_components': 50, u'linear_... 25 0.747617 0.825828 0.759691 0.825387 0.761796 0.827975 0.039008 0.002506 0.006251 0.001131
23 0.571644 0.026993 0.756328 0.826395 50 3 False {u'features__pca__n_components': 50, u'linear_... 26 0.747612 0.825829 0.759701 0.825391 0.761704 0.827966 0.017453 0.000726 0.006229 0.001125
24 0.500115 0.032632 0.764113 0.840495 60 1 True {u'features__pca__n_components': 60, u'linear_... 16 0.748134 0.849445 0.786408 0.834737 0.757857 0.837302 0.027055 0.008757 0.016243 0.006415
25 0.469566 0.030240 0.764185 0.840466 60 1 False {u'features__pca__n_components': 60, u'linear_... 15 0.748008 0.849312 0.785953 0.834811 0.758656 0.837274 0.008249 0.003530 0.015981 0.006336
26 0.478644 0.030291 0.762275 0.841284 60 2 True {u'features__pca__n_components': 60, u'linear_... 18 0.743717 0.850517 0.785115 0.836113 0.758066 0.837223 0.008023 0.004121 0.017166 0.006544
27 0.491381 0.027537 0.762310 0.841385 60 2 False {u'features__pca__n_components': 60, u'linear_... 17 0.743447 0.850698 0.785145 0.836126 0.758411 0.837330 0.032186 0.002842 0.017250 0.006604
28 0.499675 0.027345 0.767069 0.842933 60 3 True {u'features__pca__n_components': 60, u'linear_... 14 0.747630 0.852072 0.787389 0.836425 0.766263 0.840302 0.038623 0.002254 0.016247 0.006653
29 0.472722 0.026165 0.767206 0.842873 60 3 False {u'features__pca__n_components': 60, u'linear_... 13 0.748120 0.851901 0.787266 0.836389 0.766305 0.840330 0.010835 0.000900 0.015999 0.006584
30 0.498887 0.027674 0.767913 0.848580 70 1 True {u'features__pca__n_components': 70, u'linear_... 12 0.746791 0.859974 0.793587 0.842296 0.763443 0.843470 0.015795 0.001070 0.019370 0.008071
31 0.497776 0.028587 0.768133 0.848725 70 1 False {u'features__pca__n_components': 70, u'linear_... 11 0.746978 0.860422 0.794124 0.842249 0.763379 0.843505 0.018908 0.000663 0.019544 0.008287
32 0.517131 0.027752 0.768725 0.849192 70 2 True {u'features__pca__n_components': 70, u'linear_... 9 0.747902 0.861467 0.795190 0.842706 0.763162 0.843402 0.028962 0.000752 0.019707 0.008685
33 0.500153 0.026732 0.768449 0.848988 70 2 False {u'features__pca__n_components': 70, u'linear_... 10 0.747810 0.861296 0.793576 0.842277 0.764043 0.843391 0.022354 0.000203 0.018947 0.008715
34 0.497653 0.027407 0.772762 0.851663 70 3 True {u'features__pca__n_components': 70, u'linear_... 8 0.753456 0.863179 0.793911 0.842341 0.770995 0.849469 0.024586 0.000413 0.016568 0.008647
35 0.499726 0.034937 0.773148 0.851731 70 3 False {u'features__pca__n_components': 70, u'linear_... 7 0.753485 0.863238 0.793856 0.842223 0.772179 0.849732 0.018561 0.004668 0.016501 0.008695
36 0.576356 0.036384 0.782546 0.866248 80 1 True {u'features__pca__n_components': 80, u'linear_... 3 0.760214 0.868707 0.810224 0.858451 0.777285 0.871586 0.008223 0.008972 0.020759 0.005637
37 0.579505 0.032532 0.782459 0.866298 80 1 False {u'features__pca__n_components': 80, u'linear_... 4 0.760060 0.868649 0.810671 0.858520 0.776731 0.871725 0.011013 0.001873 0.021061 0.005641
38 0.583922 0.028821 0.777981 0.867709 80 2 True {u'features__pca__n_components': 80, u'linear_... 6 0.760239 0.868729 0.798649 0.861811 0.775123 0.872588 0.004630 0.000205 0.015815 0.004458
39 0.626013 0.029186 0.778234 0.867617 80 2 False {u'features__pca__n_components': 80, u'linear_... 5 0.760418 0.868843 0.799191 0.861417 0.775163 0.872590 0.052565 0.001325 0.015982 0.004643
40 0.581026 0.033601 0.784190 0.869783 80 3 True {u'features__pca__n_components': 80, u'linear_... 1 0.770955 0.872084 0.799622 0.862490 0.782044 0.874774 0.005301 0.003040 0.011805 0.005272
41 0.595790 0.035433 0.784133 0.869792 80 3 False {u'features__pca__n_components': 80, u'linear_... 2 0.771050 0.872389 0.798195 0.862457 0.783204 0.874529 0.014395 0.005520 0.011105 0.005259
---------- SOC
Cross_val_score:  [ 0.7908808   0.89644486  0.85925249]
Explained variance score:  0.898572054172
Mean absolute error:  0.256826504096
Mean squared error:  0.154457127791
R2 score:  0.897546044087
mean_fit_time mean_score_time mean_test_score mean_train_score param_features__pca__n_components param_features__univ_select__k param_linear__normalize params rank_test_score split0_test_score split0_train_score split1_test_score split1_train_score split2_test_score split2_train_score std_fit_time std_score_time std_test_score std_train_score
0 0.521211 0.022289 0.801045 0.813881 20 1 True {u'features__pca__n_components': 20, u'linear_... 41 0.830676 0.798594 0.786840 0.820089 0.785505 0.822959 0.076854 0.001333 0.021000 0.010873
1 0.420244 0.021205 0.801045 0.813881 20 1 False {u'features__pca__n_components': 20, u'linear_... 42 0.830676 0.798594 0.786840 0.820089 0.785505 0.822959 0.002498 0.001246 0.021000 0.010873
2 0.426807 0.022061 0.804188 0.815591 20 2 True {u'features__pca__n_components': 20, u'linear_... 37 0.833388 0.799074 0.786874 0.820094 0.792189 0.827607 0.025540 0.001396 0.020800 0.012076
3 0.421932 0.020190 0.804188 0.815591 20 2 False {u'features__pca__n_components': 20, u'linear_... 38 0.833388 0.799074 0.786874 0.820094 0.792189 0.827607 0.026729 0.000369 0.020800 0.012076
4 0.405382 0.020134 0.802430 0.821659 20 3 True {u'features__pca__n_components': 20, u'linear_... 39 0.836657 0.803088 0.793067 0.825275 0.777434 0.836614 0.001331 0.000159 0.025073 0.013924
5 0.414270 0.020052 0.802430 0.821659 20 3 False {u'features__pca__n_components': 20, u'linear_... 40 0.836657 0.803088 0.793067 0.825275 0.777434 0.836614 0.004303 0.000170 0.025073 0.013924
6 0.435031 0.021687 0.823852 0.848407 30 1 True {u'features__pca__n_components': 30, u'linear_... 35 0.834534 0.843930 0.824421 0.848622 0.812559 0.852669 0.005691 0.000201 0.008983 0.003571
7 0.449671 0.022753 0.823852 0.848407 30 1 False {u'features__pca__n_components': 30, u'linear_... 36 0.834534 0.843930 0.824421 0.848622 0.812559 0.852669 0.028329 0.000643 0.008983 0.003571
8 0.441006 0.021449 0.830513 0.853216 30 2 True {u'features__pca__n_components': 30, u'linear_... 31 0.851727 0.854542 0.825961 0.850723 0.813769 0.854381 0.014210 0.000054 0.015831 0.001764
9 0.419900 0.021510 0.830513 0.853216 30 2 False {u'features__pca__n_components': 30, u'linear_... 32 0.851727 0.854542 0.825961 0.850723 0.813769 0.854381 0.008712 0.000111 0.015831 0.001764
10 0.434198 0.022085 0.828020 0.858038 30 3 True {u'features__pca__n_components': 30, u'linear_... 33 0.856062 0.855606 0.828349 0.851768 0.799540 0.866739 0.013815 0.000409 0.023083 0.006349
11 0.440835 0.022299 0.828020 0.858038 30 3 False {u'features__pca__n_components': 30, u'linear_... 34 0.856062 0.855606 0.828349 0.851768 0.799540 0.866739 0.022987 0.000860 0.023083 0.006349
12 0.508459 0.022723 0.832485 0.862826 40 1 True {u'features__pca__n_components': 40, u'linear_... 30 0.836628 0.858008 0.838908 0.863541 0.821903 0.866929 0.004217 0.000214 0.007533 0.003677
13 0.518365 0.027712 0.832485 0.862826 40 1 False {u'features__pca__n_components': 40, u'linear_... 29 0.836629 0.858008 0.838911 0.863539 0.821900 0.866931 0.015242 0.004880 0.007536 0.003678
14 0.562056 0.023254 0.835322 0.865408 40 2 True {u'features__pca__n_components': 40, u'linear_... 26 0.847746 0.863771 0.837340 0.864498 0.820832 0.867957 0.047969 0.000543 0.011083 0.001826
15 0.625781 0.027032 0.835322 0.865407 40 2 False {u'features__pca__n_components': 40, u'linear_... 25 0.847748 0.863769 0.837339 0.864496 0.820832 0.867957 0.094348 0.005727 0.011084 0.001827
16 0.578219 0.026466 0.833659 0.870949 40 3 True {u'features__pca__n_components': 40, u'linear_... 27 0.850240 0.863963 0.847252 0.869562 0.803420 0.879323 0.048182 0.004001 0.021396 0.006347
17 0.625638 0.025436 0.833659 0.870949 40 3 False {u'features__pca__n_components': 40, u'linear_... 28 0.850241 0.863962 0.847251 0.869561 0.803420 0.879324 0.112700 0.002867 0.021396 0.006348
18 0.577053 0.025683 0.844963 0.888631 50 1 True {u'features__pca__n_components': 50, u'linear_... 21 0.852872 0.887607 0.855094 0.886187 0.826892 0.892100 0.042139 0.001256 0.012798 0.002520
19 0.535779 0.023953 0.844960 0.888632 50 1 False {u'features__pca__n_components': 50, u'linear_... 22 0.852869 0.887606 0.855089 0.886191 0.826893 0.892099 0.009551 0.000144 0.012796 0.002519
20 0.534975 0.025589 0.845754 0.890552 50 2 True {u'features__pca__n_components': 50, u'linear_... 19 0.853523 0.891510 0.853378 0.886450 0.830330 0.893695 0.010421 0.002062 0.010896 0.003035
21 0.532923 0.024654 0.845751 0.890552 50 2 False {u'features__pca__n_components': 50, u'linear_... 20 0.853520 0.891510 0.853377 0.886451 0.830324 0.893696 0.004818 0.000454 0.010898 0.003035
22 0.524229 0.026910 0.840514 0.890984 50 3 True {u'features__pca__n_components': 50, u'linear_... 23 0.852801 0.891540 0.852526 0.886515 0.816168 0.894898 0.017232 0.002409 0.017199 0.003445
23 0.544089 0.024621 0.840513 0.890984 50 3 False {u'features__pca__n_components': 50, u'linear_... 24 0.852799 0.891539 0.852530 0.886514 0.816163 0.894900 0.023225 0.000255 0.017202 0.003446
24 0.466422 0.025479 0.867095 0.906795 60 1 True {u'features__pca__n_components': 60, u'linear_... 13 0.882302 0.900745 0.872251 0.909635 0.846673 0.910006 0.016307 0.000372 0.014999 0.004281
25 0.472042 0.025904 0.867081 0.906901 60 1 False {u'features__pca__n_components': 60, u'linear_... 14 0.882335 0.900803 0.872579 0.909857 0.846269 0.910043 0.014807 0.000307 0.015232 0.004313
26 0.487591 0.026340 0.864236 0.908568 60 2 True {u'features__pca__n_components': 60, u'linear_... 16 0.876137 0.903019 0.867313 0.911470 0.849213 0.911215 0.026644 0.001006 0.011208 0.003925
27 0.482391 0.026118 0.864328 0.908516 60 2 False {u'features__pca__n_components': 60, u'linear_... 15 0.876418 0.903122 0.867223 0.911301 0.849298 0.911127 0.013891 0.000604 0.011262 0.003815
28 0.481183 0.025662 0.860012 0.908890 60 3 True {u'features__pca__n_components': 60, u'linear_... 17 0.877592 0.903176 0.867114 0.911607 0.835261 0.911887 0.017101 0.000736 0.018000 0.004042
29 0.490647 0.027217 0.859949 0.908813 60 3 False {u'features__pca__n_components': 60, u'linear_... 18 0.878110 0.903235 0.866875 0.911458 0.834793 0.911748 0.030095 0.001483 0.018354 0.003946
30 0.498701 0.033660 0.870870 0.920428 70 1 True {u'features__pca__n_components': 70, u'linear_... 7 0.889973 0.914974 0.867632 0.927366 0.854931 0.918943 0.017480 0.005364 0.014492 0.005167
31 0.490923 0.027290 0.870854 0.920414 70 1 False {u'features__pca__n_components': 70, u'linear_... 8 0.890075 0.914972 0.867599 0.927372 0.854814 0.918897 0.010878 0.000271 0.014582 0.005174
32 0.515409 0.030708 0.869550 0.921816 70 2 True {u'features__pca__n_components': 70, u'linear_... 10 0.885970 0.918807 0.867564 0.927390 0.855052 0.919252 0.026539 0.004561 0.012704 0.003945
33 0.508293 0.027374 0.869700 0.921814 70 2 False {u'features__pca__n_components': 70, u'linear_... 9 0.885992 0.918820 0.867624 0.927402 0.855422 0.919220 0.020530 0.000390 0.012570 0.003955
34 0.496810 0.032608 0.868919 0.921985 70 3 True {u'features__pca__n_components': 70, u'linear_... 12 0.888458 0.919007 0.866971 0.927667 0.851251 0.919281 0.011955 0.005765 0.015257 0.004020
35 0.494839 0.027380 0.869001 0.921991 70 3 False {u'features__pca__n_components': 70, u'linear_... 11 0.888343 0.918969 0.867094 0.927655 0.851491 0.919347 0.014148 0.000428 0.015110 0.004008
36 0.614999 0.030461 0.880851 0.930795 80 1 True {u'features__pca__n_components': 80, u'linear_... 1 0.897448 0.924267 0.875162 0.939497 0.869878 0.928619 0.025939 0.002429 0.011955 0.006405
37 0.609707 0.033718 0.880782 0.930762 80 1 False {u'features__pca__n_components': 80, u'linear_... 2 0.897211 0.924242 0.875074 0.939547 0.869998 0.928496 0.035606 0.005309 0.011822 0.006451
38 0.603181 0.032707 0.879803 0.931840 80 2 True {u'features__pca__n_components': 80, u'linear_... 3 0.894539 0.927212 0.875478 0.939756 0.869336 0.928550 0.029106 0.002902 0.010736 0.005625
39 0.637093 0.031580 0.879680 0.931817 80 2 False {u'features__pca__n_components': 80, u'linear_... 4 0.894429 0.927308 0.875131 0.939506 0.869422 0.928638 0.098898 0.003854 0.010706 0.005464
40 0.663934 0.030527 0.877328 0.932094 80 3 True {u'features__pca__n_components': 80, u'linear_... 5 0.896032 0.927376 0.874816 0.940056 0.861063 0.928849 0.057695 0.001657 0.014391 0.005662
41 0.636079 0.029724 0.877072 0.931955 80 3 False {u'features__pca__n_components': 80, u'linear_... 6 0.895516 0.927308 0.874663 0.939894 0.860967 0.928664 0.093412 0.000800 0.014211 0.005641
---------- Sand
Cross_val_score:  [ 0.8660768   0.8284549   0.86634199]
Explained variance score:  0.888987592216
Mean absolute error:  0.236546806376
Mean squared error:  0.109696097705
R2 score:  0.888716204079
mean_fit_time mean_score_time mean_test_score mean_train_score param_features__pca__n_components param_features__univ_select__k param_linear__normalize params rank_test_score split0_test_score split0_train_score split1_test_score split1_train_score split2_test_score split2_train_score std_fit_time std_score_time std_test_score std_train_score
0 0.557018 0.030715 0.723456 0.754630 20 1 True {u'features__pca__n_components': 20, u'linear_... 41 0.708228 0.763865 0.734734 0.751713 0.727466 0.748313 0.050004 0.010695 0.011189 0.006676
1 0.461978 0.019401 0.723456 0.754630 20 1 False {u'features__pca__n_components': 20, u'linear_... 42 0.708228 0.763865 0.734734 0.751713 0.727466 0.748313 0.021658 0.001033 0.011189 0.006676
2 0.464271 0.022543 0.730042 0.760747 20 2 True {u'features__pca__n_components': 20, u'linear_... 40 0.705771 0.765478 0.736990 0.758313 0.747459 0.758450 0.023035 0.003743 0.017718 0.003346
3 0.458089 0.021778 0.730042 0.760747 20 2 False {u'features__pca__n_components': 20, u'linear_... 39 0.705771 0.765478 0.736990 0.758313 0.747459 0.758450 0.013902 0.003098 0.017718 0.003346
4 0.454933 0.019413 0.755829 0.774223 20 3 True {u'features__pca__n_components': 20, u'linear_... 37 0.708652 0.766030 0.757428 0.773334 0.801590 0.783306 0.004902 0.000571 0.037971 0.007081
5 0.440131 0.019050 0.755829 0.774223 20 3 False {u'features__pca__n_components': 20, u'linear_... 38 0.708652 0.766030 0.757428 0.773334 0.801590 0.783306 0.011106 0.000357 0.037971 0.007081
6 0.460359 0.021714 0.772673 0.810179 30 1 True {u'features__pca__n_components': 30, u'linear_... 35 0.768543 0.806694 0.747281 0.821013 0.802212 0.802830 0.040030 0.002761 0.022601 0.007821
7 0.456100 0.019853 0.772673 0.810179 30 1 False {u'features__pca__n_components': 30, u'linear_... 36 0.768543 0.806694 0.747281 0.821013 0.802212 0.802831 0.019675 0.000164 0.022601 0.007821
8 0.487452 0.020546 0.777828 0.814035 30 2 True {u'features__pca__n_components': 30, u'linear_... 34 0.767343 0.809825 0.750785 0.821864 0.815396 0.810415 0.044592 0.000725 0.027387 0.005542
9 0.501726 0.030382 0.777828 0.814035 30 2 False {u'features__pca__n_components': 30, u'linear_... 33 0.767343 0.809825 0.750785 0.821864 0.815396 0.810415 0.015212 0.013528 0.027387 0.005542
10 0.495870 0.022594 0.790180 0.819740 30 3 True {u'features__pca__n_components': 30, u'linear_... 31 0.772398 0.811724 0.762329 0.829222 0.835882 0.818275 0.069018 0.003258 0.032546 0.007218
11 0.448914 0.021454 0.790180 0.819740 30 3 False {u'features__pca__n_components': 30, u'linear_... 32 0.772398 0.811724 0.762329 0.829222 0.835882 0.818275 0.013376 0.002067 0.032546 0.007218
12 0.515744 0.020720 0.805838 0.856219 40 1 True {u'features__pca__n_components': 40, u'linear_... 30 0.796512 0.864833 0.784678 0.860406 0.836361 0.843419 0.003095 0.000124 0.022097 0.009230
13 0.521306 0.023493 0.805884 0.856217 40 1 False {u'features__pca__n_components': 40, u'linear_... 29 0.796512 0.864833 0.784679 0.860406 0.836497 0.843413 0.010254 0.003358 0.022159 0.009232
14 0.607341 0.023096 0.808081 0.859794 40 2 True {u'features__pca__n_components': 40, u'linear_... 27 0.797024 0.864900 0.784680 0.860402 0.842583 0.854079 0.121846 0.001462 0.024888 0.004438
15 0.555552 0.021134 0.808078 0.859794 40 2 False {u'features__pca__n_components': 40, u'linear_... 28 0.797026 0.864899 0.784670 0.860405 0.842580 0.854079 0.038250 0.000075 0.024890 0.004439
16 0.601110 0.022913 0.812496 0.861729 40 3 True {u'features__pca__n_components': 40, u'linear_... 26 0.797006 0.864914 0.788382 0.863948 0.852161 0.856326 0.120713 0.001647 0.028241 0.003841
17 0.601864 0.037135 0.812497 0.861730 40 3 False {u'features__pca__n_components': 40, u'linear_... 25 0.797005 0.864914 0.788384 0.863951 0.852162 0.856325 0.091311 0.022829 0.028240 0.003842
18 0.572880 0.023073 0.820941 0.874399 50 1 True {u'features__pca__n_components': 50, u'linear_... 23 0.816552 0.876597 0.798133 0.880123 0.848156 0.866477 0.028398 0.000533 0.020644 0.005784
19 0.594553 0.024487 0.820940 0.874398 50 1 False {u'features__pca__n_components': 50, u'linear_... 24 0.816552 0.876596 0.798132 0.880120 0.848152 0.866478 0.048878 0.000322 0.020643 0.005782
20 0.556988 0.023851 0.822177 0.874960 50 2 True {u'features__pca__n_components': 50, u'linear_... 21 0.816663 0.876934 0.798449 0.880184 0.851440 0.867761 0.032029 0.001164 0.021969 0.005260
21 0.571599 0.027943 0.822176 0.874959 50 2 False {u'features__pca__n_components': 50, u'linear_... 22 0.816662 0.876934 0.798446 0.880182 0.851443 0.867761 0.023973 0.003345 0.021972 0.005260
22 0.572743 0.022977 0.825356 0.876068 50 3 True {u'features__pca__n_components': 50, u'linear_... 20 0.816634 0.876938 0.802098 0.881109 0.857369 0.870159 0.048868 0.000837 0.023381 0.004512
23 0.557765 0.024122 0.825356 0.876069 50 3 False {u'features__pca__n_components': 50, u'linear_... 19 0.816637 0.876939 0.802095 0.881110 0.857370 0.870159 0.027137 0.001066 0.023382 0.004513
24 0.504011 0.026222 0.828412 0.883298 60 1 True {u'features__pca__n_components': 60, u'linear_... 17 0.826015 0.884853 0.805166 0.887547 0.854065 0.877493 0.019710 0.001540 0.020022 0.004249
25 0.510764 0.023744 0.828272 0.883313 60 1 False {u'features__pca__n_components': 60, u'linear_... 18 0.825851 0.884881 0.805210 0.887639 0.853764 0.877419 0.011103 0.000219 0.019884 0.004317
26 0.510834 0.035741 0.829251 0.884060 60 2 True {u'features__pca__n_components': 60, u'linear_... 16 0.826156 0.885247 0.803785 0.887867 0.857823 0.879064 0.018786 0.009763 0.022155 0.003691
27 0.496351 0.024017 0.829318 0.884085 60 2 False {u'features__pca__n_components': 60, u'linear_... 15 0.825874 0.885344 0.804198 0.887782 0.857895 0.879130 0.004878 0.000068 0.022043 0.003643
28 0.501100 0.025562 0.831808 0.884907 60 3 True {u'features__pca__n_components': 60, u'linear_... 13 0.827106 0.885760 0.804760 0.887864 0.863575 0.881097 0.015189 0.001332 0.024226 0.002828
29 0.515190 0.024539 0.831783 0.884905 60 3 False {u'features__pca__n_components': 60, u'linear_... 14 0.827427 0.885748 0.804477 0.887866 0.863463 0.881099 0.029267 0.000515 0.024262 0.002826
30 0.529060 0.028845 0.835215 0.891653 70 1 True {u'features__pca__n_components': 70, u'linear_... 12 0.833982 0.890133 0.804544 0.899811 0.867123 0.885013 0.021869 0.003253 0.025546 0.006136
31 0.560635 0.026237 0.835405 0.891646 70 1 False {u'features__pca__n_components': 70, u'linear_... 11 0.833877 0.890118 0.804950 0.899814 0.867393 0.885007 0.038624 0.001099 0.025499 0.006141
32 0.519889 0.029008 0.836000 0.893314 70 2 True {u'features__pca__n_components': 70, u'linear_... 9 0.834359 0.890495 0.797866 0.900686 0.875780 0.888761 0.012223 0.005080 0.031809 0.005261
33 0.525165 0.035795 0.835936 0.893322 70 2 False {u'features__pca__n_components': 70, u'linear_... 10 0.834192 0.890494 0.797814 0.900662 0.875809 0.888810 0.022771 0.011796 0.031845 0.005235
34 0.517272 0.027509 0.836672 0.893948 70 3 True {u'features__pca__n_components': 70, u'linear_... 8 0.835704 0.891134 0.796933 0.901465 0.877383 0.889245 0.016708 0.002982 0.032829 0.005371
35 0.521266 0.027062 0.836728 0.893935 70 3 False {u'features__pca__n_components': 70, u'linear_... 7 0.835643 0.891143 0.796925 0.901459 0.877621 0.889202 0.030661 0.002282 0.032932 0.005379
36 0.584862 0.028047 0.845804 0.897511 80 1 True {u'features__pca__n_components': 80, u'linear_... 5 0.850921 0.896441 0.821547 0.905277 0.864925 0.890817 0.012852 0.001695 0.018065 0.005952
37 0.585904 0.029049 0.845660 0.897559 80 1 False {u'features__pca__n_components': 80, u'linear_... 6 0.850876 0.896452 0.821137 0.905379 0.864948 0.890847 0.020541 0.003151 0.018252 0.005984
38 0.577818 0.030924 0.847378 0.898759 80 2 True {u'features__pca__n_components': 80, u'linear_... 4 0.850660 0.896704 0.819745 0.906002 0.871717 0.893571 0.043109 0.004548 0.021331 0.005279
39 0.564118 0.026724 0.847600 0.898831 80 2 False {u'features__pca__n_components': 80, u'linear_... 3 0.851302 0.896884 0.819775 0.906080 0.871709 0.893528 0.008944 0.000467 0.021350 0.005306
40 0.582777 0.028402 0.847728 0.899165 80 3 True {u'features__pca__n_components': 80, u'linear_... 2 0.851702 0.897333 0.818966 0.906538 0.872501 0.893625 0.039071 0.001119 0.022022 0.005428
41 0.585593 0.026860 0.847885 0.899070 80 3 False {u'features__pca__n_components': 80, u'linear_... 1 0.851740 0.896946 0.819711 0.906681 0.872188 0.893583 0.028587 0.000699 0.021584 0.005554
Completed in -878.54 sec

In [87]:
print len(y_pipelines_linsel)
print y_scores_linsel


5
[0.16842671848506297, 1.1007642117503149, 0.17877103111731135, 0.15445712779083717, 0.10969609770534818]

In [88]:
# Ridge Regression with PCA combinations

y_pipelines_ridge = []
y_scores_ridge = []

start = time.time()
for ind, y in enumerate(y_vars):
    
    X_train, X_test, y_train, y_test = train_test_split(X_wDepth, y, test_size=0.33, random_state=42)
    
    # set up the train and test data
    print '\n----------', y_var_labels[ind]

    pca = PCA()
    ridge = Ridge()
    steps = [('pca', pca), ('ridge', ridge)]
    pipeline = Pipeline(steps)

    parameters = dict(pca__n_components=list(range(20, 90, 10)),
                     ridge__alpha=np.linspace(0.0, 0.5, 5),
                     ridge__normalize=[True, False])

    cv = GridSearchCV(pipeline, param_grid=parameters, verbose=0)
    cv.fit(X_train, y_train)   

    print 'Cross_val_score: ', cross_val_score(cv, X_test, y_test)
    
    y_predictions = cv.predict(X_test)
    mse = mean_squared_error(y_test, y_predictions)
    print 'Explained variance score: ', explained_variance_score(y_test, y_predictions)
    print 'Mean absolute error: ', mean_absolute_error(y_test, y_predictions)
    print 'Mean squared error: ', mse
    print 'R2 score: ', r2_score(y_test, y_predictions)
    
    display(pd.DataFrame.from_dict(cv.cv_results_))
    
    # capture the best pipeline estimator and mse value
    y_pipelines_ridge.append(cv.best_estimator_)
    y_scores_ridge.append(mse)
    
print 'Completed in %0.2f sec' % (start-time.time())


---------- Ca
Cross_val_score:  [ 0.83355056  0.74513654  0.86852704]
Explained variance score:  0.901076393629
Mean absolute error:  0.196188430286
Mean squared error:  0.168774203968
R2 score:  0.900993895701
mean_fit_time mean_score_time mean_test_score mean_train_score param_pca__n_components param_ridge__alpha param_ridge__normalize params rank_test_score split0_test_score split0_train_score split1_test_score split1_train_score split2_test_score split2_train_score std_fit_time std_score_time std_test_score std_train_score
0 0.447142 0.017420 0.751867 0.825906 20 0 True {u'ridge__normalize': True, u'ridge__alpha': 0... 65 0.785879 0.823166 0.727543 0.836301 0.742048 0.818251 0.084956 0.002561 0.024812 0.007619
1 0.344565 0.014887 0.751867 0.825906 20 0 False {u'ridge__normalize': False, u'ridge__alpha': ... 66 0.785879 0.823166 0.727543 0.836301 0.742047 0.818251 0.083496 0.000415 0.024812 0.007619
2 0.365075 0.015547 0.756259 0.815710 20 0.125 True {u'ridge__normalize': True, u'ridge__alpha': 0... 60 0.814786 0.813004 0.748384 0.825976 0.705381 0.808149 0.112105 0.001013 0.045024 0.007525
3 0.380999 0.023149 0.751946 0.825906 20 0.125 False {u'ridge__normalize': False, u'ridge__alpha': ... 64 0.786149 0.823166 0.727671 0.836300 0.741885 0.818251 0.053809 0.009556 0.024916 0.007619
4 0.426613 0.019070 0.743885 0.792870 20 0.25 True {u'ridge__normalize': True, u'ridge__alpha': 0... 67 0.816852 0.790240 0.746732 0.802849 0.667789 0.785521 0.118118 0.002596 0.060907 0.007314
5 0.336156 0.021557 0.752023 0.825905 20 0.25 False {u'ridge__normalize': False, u'ridge__alpha': ... 63 0.786417 0.823165 0.727797 0.836299 0.741722 0.818250 0.022640 0.007412 0.025021 0.007619
6 0.488623 0.022276 0.723257 0.764475 20 0.375 True {u'ridge__normalize': True, u'ridge__alpha': 0... 69 0.804618 0.761939 0.733264 0.774097 0.631572 0.757390 0.108155 0.008844 0.071021 0.007052
7 0.321908 0.017872 0.752100 0.825903 20 0.375 False {u'ridge__normalize': False, u'ridge__alpha': ... 62 0.786683 0.823163 0.727922 0.836298 0.741560 0.818249 0.019730 0.004694 0.025125 0.007619
8 0.293679 0.016120 0.698844 0.734139 20 0.5 True {u'ridge__normalize': True, u'ridge__alpha': 0... 70 0.784850 0.731704 0.713712 0.743378 0.597637 0.727334 0.013567 0.001398 0.077172 0.006773
9 0.315615 0.015625 0.752176 0.825901 20 0.5 False {u'ridge__normalize': False, u'ridge__alpha': ... 61 0.786947 0.823161 0.728047 0.836296 0.741398 0.818247 0.022597 0.000817 0.025230 0.007619
10 0.316556 0.018938 0.809155 0.875621 30 0 True {u'ridge__normalize': True, u'ridge__alpha': 0... 48 0.845905 0.865919 0.781084 0.889915 0.800332 0.871029 0.015845 0.001910 0.027195 0.010321
11 0.361826 0.022145 0.809155 0.875621 30 0 False {u'ridge__normalize': False, u'ridge__alpha': ... 47 0.845906 0.865919 0.781084 0.889915 0.800332 0.871029 0.044176 0.007991 0.027196 0.010321
12 0.433557 0.028742 0.810163 0.864811 30 0.125 True {u'ridge__normalize': True, u'ridge__alpha': 0... 41 0.862095 0.855228 0.804990 0.878929 0.763202 0.860275 0.053069 0.014926 0.040551 0.010193
13 0.363919 0.036307 0.809236 0.875618 30 0.125 False {u'ridge__normalize': False, u'ridge__alpha': ... 46 0.846159 0.865916 0.781413 0.889912 0.799992 0.871025 0.048317 0.028547 0.027235 0.010320
14 0.413747 0.029345 0.794545 0.840596 30 0.25 True {u'ridge__normalize': True, u'ridge__alpha': 0... 53 0.855075 0.831282 0.804167 0.854319 0.724157 0.836187 0.082475 0.014860 0.053895 0.009908
15 0.412982 0.023365 0.809309 0.875609 30 0.25 False {u'ridge__normalize': False, u'ridge__alpha': ... 45 0.846403 0.865909 0.781728 0.889902 0.799651 0.871016 0.100882 0.003767 0.027279 0.010319
16 0.356453 0.017163 0.770907 0.810492 30 0.375 True {u'ridge__normalize': True, u'ridge__alpha': 0... 58 0.836127 0.801512 0.790305 0.823723 0.686036 0.806241 0.017866 0.001166 0.062808 0.009553
17 0.327283 0.017851 0.809374 0.875595 30 0.375 False {u'ridge__normalize': False, u'ridge__alpha': ... 44 0.846639 0.865898 0.782030 0.889885 0.799310 0.871000 0.023489 0.000266 0.027326 0.010318
18 0.471370 0.030900 0.743743 0.778330 30 0.5 True {u'ridge__normalize': True, u'ridge__alpha': 0... 68 0.811260 0.769706 0.769687 0.791036 0.650022 0.774248 0.104347 0.011570 0.068349 0.009174
19 0.374204 0.018378 0.809433 0.875575 30 0.5 False {u'ridge__normalize': False, u'ridge__alpha': ... 43 0.846866 0.865882 0.782320 0.889863 0.798968 0.870979 0.100079 0.002692 0.027376 0.010315
20 0.422687 0.017088 0.838994 0.913629 40 0 True {u'ridge__normalize': True, u'ridge__alpha': 0... 34 0.893388 0.900659 0.776746 0.934486 0.846636 0.905741 0.052511 0.000454 0.047939 0.014894
21 0.391820 0.020901 0.838993 0.913629 40 0 False {u'ridge__normalize': False, u'ridge__alpha': ... 35 0.893388 0.900659 0.776752 0.934486 0.846628 0.905742 0.017940 0.003139 0.047936 0.014894
22 0.394326 0.018664 0.839580 0.902349 40 0.125 True {u'ridge__normalize': True, u'ridge__alpha': 0... 31 0.901972 0.889540 0.807324 0.922949 0.809203 0.894558 0.008615 0.001477 0.044210 0.014710
23 0.555692 0.021570 0.839295 0.913605 40 0.125 False {u'ridge__normalize': False, u'ridge__alpha': ... 33 0.893781 0.900643 0.777989 0.934465 0.845904 0.905706 0.109273 0.003300 0.047517 0.014894
24 0.544452 0.020041 0.823114 0.877083 40 0.25 True {u'ridge__normalize': True, u'ridge__alpha': 0... 40 0.889290 0.864633 0.810719 0.897107 0.769076 0.869511 0.090279 0.003231 0.049868 0.014298
25 0.782726 0.034152 0.839551 0.913540 40 0.25 False {u'ridge__normalize': False, u'ridge__alpha': ... 32 0.894114 0.900597 0.779152 0.934409 0.845175 0.905615 0.078799 0.012731 0.047116 0.014898
26 0.393302 0.017893 0.798429 0.845672 40 0.375 True {u'ridge__normalize': True, u'ridge__alpha': 0... 52 0.865985 0.833668 0.799575 0.864979 0.729466 0.838368 0.011772 0.000550 0.055758 0.013786
27 0.612179 0.022823 0.839745 0.913438 40 0.375 False {u'ridge__normalize': False, u'ridge__alpha': ... 30 0.894398 0.900526 0.780239 0.934319 0.844386 0.905468 0.207485 0.004806 0.046735 0.014903
28 0.587802 0.026332 0.770155 0.812114 40 0.5 True {u'ridge__normalize': True, u'ridge__alpha': 0... 59 0.837677 0.800586 0.780715 0.830654 0.691810 0.805103 0.127821 0.004507 0.060034 0.013239
29 0.481338 0.017140 0.839896 0.913306 40 0.5 False {u'ridge__normalize': False, u'ridge__alpha': ... 29 0.894639 0.900430 0.781275 0.934204 0.843563 0.905285 0.077603 0.000420 0.046368 0.014909
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
40 0.478075 0.032999 0.853415 0.927482 60 0 True {u'ridge__normalize': True, u'ridge__alpha': 0... 20 0.899136 0.922143 0.810123 0.942018 0.850809 0.918286 0.096770 0.010064 0.036398 0.010398
41 0.648326 0.027211 0.853414 0.927467 60 0 False {u'ridge__normalize': False, u'ridge__alpha': ... 21 0.899138 0.922081 0.810094 0.942041 0.850833 0.918279 0.179413 0.003018 0.036409 0.010421
42 0.536177 0.019969 0.850763 0.916017 60 0.125 True {u'ridge__normalize': True, u'ridge__alpha': 0... 22 0.903418 0.910739 0.835065 0.930423 0.813601 0.906889 0.269162 0.000273 0.038319 0.010307
43 0.341317 0.023910 0.854376 0.927269 60 0.125 False {u'ridge__normalize': False, u'ridge__alpha': ... 18 0.902375 0.921839 0.809239 0.941918 0.851330 0.918049 0.011293 0.002971 0.038096 0.010474
44 0.440317 0.024053 0.832163 0.890361 60 0.25 True {u'ridge__normalize': True, u'ridge__alpha': 0... 37 0.888007 0.885194 0.834295 0.904371 0.773971 0.881517 0.060474 0.004023 0.046594 0.010020
45 0.434900 0.025521 0.854694 0.926801 60 0.25 False {u'ridge__normalize': False, u'ridge__alpha': ... 15 0.904229 0.921223 0.808362 0.941624 0.851300 0.917556 0.113661 0.006775 0.039223 0.010588
46 0.339981 0.021282 0.805852 0.858483 60 0.375 True {u'ridge__normalize': True, u'ridge__alpha': 0... 50 0.862804 0.853562 0.819940 0.871961 0.734592 0.849925 0.009142 0.002437 0.053296 0.009645
47 0.353006 0.020783 0.854692 0.926292 60 0.375 False {u'ridge__normalize': False, u'ridge__alpha': ... 16 0.905585 0.920714 0.807279 0.941249 0.851016 0.916913 0.018384 0.000745 0.040230 0.010689
48 0.356103 0.021036 0.776182 0.824403 60 0.5 True {u'ridge__normalize': True, u'ridge__alpha': 0... 56 0.833343 0.819648 0.798612 0.837368 0.696368 0.816192 0.019018 0.001249 0.058139 0.009276
49 0.367323 0.021134 0.854589 0.925700 60 0.5 False {u'ridge__normalize': False, u'ridge__alpha': ... 17 0.906361 0.919997 0.806827 0.940855 0.850378 0.916249 0.018776 0.000972 0.040756 0.010825
50 0.639681 0.092506 0.850061 0.935042 70 0 True {u'ridge__normalize': True, u'ridge__alpha': 0... 23 0.900922 0.930258 0.800960 0.944855 0.848104 0.930013 0.113733 0.084075 0.040846 0.006939
51 0.508857 0.025836 0.850060 0.935048 70 0 False {u'ridge__normalize': False, u'ridge__alpha': ... 24 0.900895 0.930245 0.800999 0.944886 0.848088 0.930013 0.066748 0.003954 0.040819 0.006957
52 0.440163 0.021908 0.848181 0.923507 70 0.125 True {u'ridge__normalize': True, u'ridge__alpha': 0... 28 0.903126 0.918694 0.830393 0.933239 0.810813 0.918589 0.055562 0.000734 0.039738 0.006881
53 0.376866 0.023093 0.854240 0.934038 70 0.125 False {u'ridge__normalize': False, u'ridge__alpha': ... 19 0.907709 0.929190 0.804266 0.944399 0.850540 0.928527 0.009395 0.001085 0.042325 0.007331
54 0.413853 0.023551 0.830686 0.897611 70 0.25 True {u'ridge__normalize': True, u'ridge__alpha': 0... 39 0.886497 0.893027 0.834322 0.907043 0.771024 0.892764 0.034588 0.003281 0.047227 0.006670
55 0.360610 0.023332 0.855481 0.932635 70 0.25 False {u'ridge__normalize': False, u'ridge__alpha': ... 13 0.910052 0.927679 0.805027 0.943691 0.851152 0.926535 0.017887 0.004383 0.042999 0.007832
56 0.340062 0.021215 0.804795 0.865464 70 0.375 True {u'ridge__normalize': True, u'ridge__alpha': 0... 51 0.860557 0.861123 0.822519 0.874540 0.731094 0.860730 0.009172 0.001065 0.054332 0.006420
57 0.340108 0.020398 0.855641 0.931295 70 0.375 False {u'ridge__normalize': False, u'ridge__alpha': ... 12 0.910964 0.926157 0.804977 0.943029 0.850766 0.924698 0.009050 0.000092 0.043419 0.008319
58 0.338074 0.020315 0.775828 0.831171 70 0.5 True {u'ridge__normalize': True, u'ridge__alpha': 0... 57 0.830502 0.827049 0.802566 0.839878 0.694206 0.826588 0.007705 0.000054 0.058778 0.006159
59 0.342725 0.023905 0.855677 0.930082 70 0.5 False {u'ridge__normalize': False, u'ridge__alpha': ... 11 0.911388 0.924790 0.805103 0.942395 0.850325 0.923062 0.002572 0.005186 0.043569 0.008735
60 0.408029 0.022035 0.848412 0.941788 80 0 True {u'ridge__normalize': True, u'ridge__alpha': 0... 26 0.906824 0.937565 0.786687 0.949542 0.851498 0.938258 0.005943 0.000109 0.049110 0.005490
61 0.415862 0.022492 0.848330 0.941807 80 0 False {u'ridge__normalize': False, u'ridge__alpha': ... 27 0.906417 0.937626 0.787141 0.949485 0.851206 0.938309 0.014682 0.000580 0.048752 0.005436
62 0.410715 0.022365 0.849196 0.930247 80 0.125 True {u'ridge__normalize': True, u'ridge__alpha': 0... 25 0.908986 0.926281 0.821516 0.937890 0.816853 0.926569 0.010045 0.000183 0.042403 0.005406
63 0.413785 0.022355 0.855879 0.939211 80 0.125 False {u'ridge__normalize': False, u'ridge__alpha': ... 10 0.912973 0.934805 0.801822 0.947861 0.852620 0.934968 0.025694 0.000381 0.045450 0.006117
64 0.416099 0.021978 0.831859 0.904072 80 0.25 True {u'ridge__normalize': True, u'ridge__alpha': 0... 38 0.891417 0.900094 0.826424 0.911544 0.777506 0.900577 0.008239 0.000017 0.046677 0.005288
65 0.409706 0.022427 0.856905 0.936481 80 0.25 False {u'ridge__normalize': False, u'ridge__alpha': ... 6 0.913732 0.931790 0.804417 0.946153 0.852344 0.931500 0.015277 0.000656 0.044758 0.006840
66 0.566772 0.023306 0.806786 0.871818 80 0.375 True {u'ridge__normalize': True, u'ridge__alpha': 0... 49 0.865167 0.867982 0.816289 0.879014 0.738675 0.868456 0.092707 0.000932 0.052091 0.005092
67 0.559252 0.029834 0.856968 0.934368 80 0.375 False {u'ridge__normalize': False, u'ridge__alpha': ... 5 0.913830 0.929456 0.805016 0.944944 0.851837 0.928703 0.172798 0.004001 0.044585 0.007485
68 0.426797 0.029178 0.778092 0.837201 80 0.5 True {u'ridge__normalize': True, u'ridge__alpha': 0... 55 0.834630 0.833493 0.797474 0.844151 0.701954 0.833960 0.010003 0.004489 0.055885 0.004918
69 0.490358 0.023170 0.856666 0.932673 80 0.5 False {u'ridge__normalize': False, u'ridge__alpha': ... 8 0.913709 0.927536 0.805056 0.944007 0.851013 0.926476 0.073159 0.000476 0.044551 0.008026

70 rows × 19 columns

---------- P
Cross_val_score:  [ 0.16529664  0.06014706  0.11388095]
Explained variance score:  0.117420405059
Mean absolute error:  0.454284009096
Mean squared error:  1.07343443002
R2 score:  0.116378859674
mean_fit_time mean_score_time mean_test_score mean_train_score param_pca__n_components param_ridge__alpha param_ridge__normalize params rank_test_score split0_test_score split0_train_score split1_test_score split1_train_score split2_test_score split2_train_score std_fit_time std_score_time std_test_score std_train_score
0 0.463123 0.023802 -0.051894 0.114146 20 0 True {u'ridge__normalize': True, u'ridge__alpha': 0... 41 0.018079 0.133428 0.033473 0.088777 -0.207504 0.120232 0.080228 0.000570 0.110107 0.018730
1 0.299254 0.015559 -0.051894 0.114146 20 0 False {u'ridge__normalize': False, u'ridge__alpha': ... 40 0.018079 0.133428 0.033473 0.088777 -0.207504 0.120232 0.004040 0.001447 0.110107 0.018730
2 0.289663 0.014606 -0.029590 0.112737 20 0.125 True {u'ridge__normalize': True, u'ridge__alpha': 0... 28 0.023911 0.131781 0.035520 0.087681 -0.148409 0.118748 0.006058 0.000153 0.084070 0.018499
3 0.321524 0.015522 -0.051732 0.114146 20 0.125 False {u'ridge__normalize': False, u'ridge__alpha': ... 39 0.018121 0.133428 0.033495 0.088777 -0.207082 0.120232 0.047015 0.001315 0.109923 0.018730
4 0.315368 0.015884 -0.014874 0.109580 20 0.25 True {u'ridge__normalize': True, u'ridge__alpha': 0... 23 0.027137 0.128091 0.036077 0.085226 -0.107998 0.115423 0.020736 0.001355 0.065886 0.017981
5 0.297203 0.015084 -0.051570 0.114145 20 0.25 False {u'ridge__normalize': False, u'ridge__alpha': ... 38 0.018163 0.133428 0.033518 0.088777 -0.206661 0.120232 0.004298 0.000232 0.109739 0.018730
6 0.317276 0.018138 -0.004899 0.105656 20 0.375 True {u'ridge__normalize': True, u'ridge__alpha': 0... 11 0.028824 0.123503 0.035820 0.082174 -0.079473 0.111289 0.013648 0.002310 0.052758 0.017337
7 0.310764 0.015662 -0.051409 0.114145 20 0.375 False {u'ridge__normalize': False, u'ridge__alpha': ... 37 0.018205 0.133427 0.033540 0.088777 -0.206242 0.120231 0.011408 0.001090 0.109557 0.018730
8 0.300032 0.015425 0.001992 0.101463 20 0.5 True {u'ridge__normalize': True, u'ridge__alpha': 0... 10 0.029576 0.118602 0.035115 0.078913 -0.058823 0.106873 0.003942 0.000435 0.043020 0.016649
9 0.330638 0.014660 -0.051249 0.114145 20 0.5 False {u'ridge__normalize': False, u'ridge__alpha': ... 36 0.018247 0.133427 0.033562 0.088777 -0.205825 0.120231 0.026824 0.000033 0.109375 0.018730
10 0.322219 0.016615 -0.091704 0.143315 30 0 True {u'ridge__normalize': True, u'ridge__alpha': 0... 55 0.020377 0.169673 0.045032 0.101407 -0.340954 0.158865 0.027901 0.000959 0.176364 0.029960
11 0.312709 0.030255 -0.091704 0.143315 30 0 False {u'ridge__normalize': False, u'ridge__alpha': ... 56 0.020377 0.169673 0.045031 0.101407 -0.340954 0.158865 0.015926 0.019150 0.176364 0.029960
12 0.324079 0.017543 -0.059435 0.141546 30 0.125 True {u'ridge__normalize': True, u'ridge__alpha': 0... 43 0.028045 0.167578 0.046771 0.100156 -0.253458 0.156904 0.011447 0.000741 0.137276 0.029590
13 0.329056 0.017410 -0.091029 0.143313 30 0.125 False {u'ridge__normalize': False, u'ridge__alpha': ... 54 0.020603 0.169670 0.044965 0.101407 -0.339087 0.158863 0.022551 0.001070 0.175516 0.029959
14 0.333956 0.016801 -0.037743 0.137583 30 0.25 True {u'ridge__normalize': True, u'ridge__alpha': 0... 32 0.032363 0.162886 0.046907 0.097351 -0.192770 0.152511 0.022429 0.000680 0.109676 0.028761
15 0.325206 0.040679 -0.090367 0.143308 30 0.25 False {u'ridge__normalize': False, u'ridge__alpha': ... 53 0.020822 0.169661 0.044899 0.101405 -0.337253 0.158856 0.018768 0.034836 0.174683 0.029956
16 0.318255 0.015898 -0.022721 0.132655 30 0.375 True {u'ridge__normalize': True, u'ridge__alpha': 0... 25 0.034695 0.157052 0.046188 0.093865 -0.149270 0.147049 0.027904 0.000186 0.089520 0.027731
17 0.307293 0.020640 -0.089718 0.143298 30 0.375 False {u'ridge__normalize': False, u'ridge__alpha': ... 52 0.021033 0.169647 0.044835 0.101402 -0.335451 0.158846 0.006322 0.006606 0.173863 0.029951
18 0.323421 0.016471 -0.012078 0.127391 30 0.5 True {u'ridge__normalize': True, u'ridge__alpha': 0... 17 0.035813 0.150820 0.045019 0.090140 -0.117251 0.141214 0.004279 0.000533 0.074392 0.026631
19 0.335579 0.016776 -0.089081 0.143286 30 0.5 False {u'ridge__normalize': False, u'ridge__alpha': ... 51 0.021238 0.169628 0.044772 0.101399 -0.333679 0.158831 0.035903 0.000310 0.173057 0.029945
20 0.401422 0.021088 -0.111019 0.182868 40 0 True {u'ridge__normalize': True, u'ridge__alpha': 0... 66 0.023843 0.206228 0.043379 0.143168 -0.400802 0.199209 0.014795 0.002737 0.204865 0.028218
21 0.397186 0.020131 -0.111036 0.182873 40 0 False {u'ridge__normalize': False, u'ridge__alpha': ... 67 0.023835 0.206238 0.043402 0.143165 -0.400869 0.199216 0.021625 0.003144 0.204900 0.028224
22 0.382424 0.019273 -0.070683 0.180607 40 0.125 True {u'ridge__normalize': True, u'ridge__alpha': 0... 47 0.033327 0.203672 0.049601 0.141397 -0.295381 0.196752 0.012379 0.002154 0.158871 0.027869
23 0.402281 0.017981 -0.107682 0.182831 40 0.125 False {u'ridge__normalize': False, u'ridge__alpha': ... 64 0.024314 0.206200 0.044419 0.143122 -0.392289 0.199171 0.019188 0.001186 0.201221 0.028225
24 0.434214 0.017557 -0.043603 0.175553 40 0.25 True {u'ridge__normalize': True, u'ridge__alpha': 0... 33 0.038697 0.197975 0.052532 0.137439 -0.222356 0.191244 0.031203 0.000493 0.126402 0.027090
25 0.396556 0.017696 -0.104612 0.182741 40 0.25 False {u'ridge__normalize': False, u'ridge__alpha': ... 63 0.024743 0.206136 0.045300 0.143005 -0.384380 0.199083 0.007392 0.000345 0.197813 0.028245
26 0.398960 0.018627 -0.024889 0.169267 40 0.375 True {u'ridge__normalize': True, u'ridge__alpha': 0... 27 0.041628 0.190887 0.053614 0.132519 -0.170168 0.184396 0.016362 0.001101 0.102744 0.026120
27 0.406134 0.017514 -0.101854 0.182601 40 0.375 False {u'ridge__normalize': False, u'ridge__alpha': ... 61 0.025133 0.206036 0.046072 0.142828 -0.377260 0.198939 0.012619 0.000414 0.194741 0.028273
28 0.400553 0.019991 -0.011639 0.162547 40 0.5 True {u'ridge__normalize': True, u'ridge__alpha': 0... 16 0.043069 0.183308 0.053561 0.127259 -0.131758 0.177075 0.027189 0.003595 0.084963 0.025082
29 0.391186 0.026814 -0.099286 0.182423 40 0.5 False {u'ridge__normalize': False, u'ridge__alpha': ... 60 0.025501 0.205907 0.046730 0.142606 -0.370572 0.198755 0.004497 0.013293 0.191839 0.028306
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
40 0.407268 0.020905 -0.095497 0.297577 60 0 True {u'ridge__normalize': True, u'ridge__alpha': 0... 59 -0.008883 0.346128 0.061851 0.248164 -0.339794 0.298438 0.022338 0.000531 0.174978 0.039998
41 0.359204 0.023617 -0.095463 0.297779 60 0 False {u'ridge__normalize': False, u'ridge__alpha': ... 58 -0.008986 0.346370 0.061664 0.248543 -0.339402 0.298424 0.016318 0.003647 0.174723 0.039940
42 0.357268 0.020142 -0.044762 0.293840 60 0.125 True {u'ridge__normalize': True, u'ridge__alpha': 0... 34 0.013365 0.341636 0.074096 0.245185 -0.221973 0.294699 0.008283 0.000434 0.127619 0.039381
43 0.357800 0.022317 -0.077774 0.295530 60 0.125 False {u'ridge__normalize': False, u'ridge__alpha': ... 48 0.008255 0.343692 0.071803 0.245894 -0.313713 0.297005 0.025325 0.002895 0.168681 0.039940
44 0.365197 0.020173 -0.011092 0.285563 60 0.25 True {u'ridge__normalize': True, u'ridge__alpha': 0... 13 0.027852 0.332106 0.081339 0.238051 -0.142618 0.286531 0.029814 0.000668 0.095446 0.038404
45 0.346510 0.019970 -0.067165 0.291999 60 0.25 False {u'ridge__normalize': False, u'ridge__alpha': ... 46 0.018554 0.339865 0.077199 0.241940 -0.297581 0.294192 0.003490 0.000572 0.164523 0.040008
46 0.354211 0.022033 0.011506 0.275278 60 0.375 True {u'ridge__normalize': True, u'ridge__alpha': 0... 8 0.036371 0.320193 0.084695 0.229537 -0.086643 0.276105 0.020347 0.002230 0.072089 0.037015
47 0.354348 0.023772 -0.060243 0.287883 60 0.375 False {u'ridge__normalize': False, u'ridge__alpha': ... 44 0.026483 0.334212 0.079301 0.238566 -0.286849 0.290870 0.018993 0.000998 0.161526 0.039104
48 0.340787 0.023664 0.026306 0.264050 60 0.5 True {u'ridge__normalize': True, u'ridge__alpha': 0... 5 0.040922 0.306617 0.085994 0.220329 -0.048055 0.265202 0.010379 0.002772 0.055662 0.035236
49 0.352175 0.021683 -0.055104 0.282842 60 0.5 False {u'ridge__normalize': False, u'ridge__alpha': ... 42 0.031573 0.328281 0.081635 0.232818 -0.278858 0.287426 0.011063 0.002650 0.159381 0.039107
50 0.364361 0.021073 -0.032640 0.355899 70 0 True {u'ridge__normalize': True, u'ridge__alpha': 0... 30 0.050008 0.408989 0.159468 0.298554 -0.307715 0.360153 0.017995 0.000830 0.199395 0.045185
51 0.357347 0.022076 -0.031728 0.355359 70 0 False {u'ridge__normalize': False, u'ridge__alpha': ... 29 0.050089 0.409016 0.159346 0.298563 -0.304937 0.358499 0.004295 0.001068 0.198091 0.045147
52 0.352556 0.021990 0.014020 0.351231 70 0.125 True {u'ridge__normalize': True, u'ridge__alpha': 0... 7 0.072350 0.403762 0.166398 0.295042 -0.196913 0.354890 0.014623 0.001522 0.153878 0.044460
53 0.357084 0.021364 -0.016055 0.348392 70 0.125 False {u'ridge__normalize': False, u'ridge__alpha': ... 24 0.057415 0.401128 0.151355 0.291837 -0.257220 0.352210 0.008120 0.000525 0.174630 0.044699
54 0.382945 0.022261 0.046098 0.341812 70 0.25 True {u'ridge__normalize': True, u'ridge__alpha': 0... 3 0.086909 0.392585 0.167194 0.286688 -0.115967 0.346165 0.022929 0.001178 0.119088 0.043342
55 0.428890 0.024408 -0.012950 0.337018 70 0.25 False {u'ridge__normalize': False, u'ridge__alpha': ... 19 0.059077 0.388531 0.142614 0.281208 -0.240821 0.341315 0.093158 0.003321 0.164548 0.043920
56 0.375307 0.021164 0.064207 0.329080 70 0.375 True {u'ridge__normalize': True, u'ridge__alpha': 0... 2 0.094961 0.378661 0.164835 0.276280 -0.067294 0.332300 0.012124 0.000853 0.097179 0.041859
57 0.355606 0.021997 -0.013762 0.326542 70 0.375 False {u'ridge__normalize': False, u'ridge__alpha': ... 21 0.060658 0.377034 0.135307 0.271575 -0.237540 0.331017 0.022811 0.000966 0.160994 0.043170
58 0.422915 0.023833 0.077358 0.316320 70 0.5 True {u'ridge__normalize': True, u'ridge__alpha': 0... 1 0.098367 0.363355 0.161537 0.265453 -0.027912 0.320151 0.063723 0.001875 0.078712 0.040060
59 0.452948 0.028068 -0.014807 0.317354 70 0.5 False {u'ridge__normalize': False, u'ridge__alpha': ... 22 0.060730 0.366356 0.129141 0.262853 -0.234586 0.322853 0.048472 0.005209 0.157750 0.042433
60 0.433100 0.023195 -0.113660 0.413658 80 0 True {u'ridge__normalize': True, u'ridge__alpha': 0... 70 0.025592 0.462150 0.061356 0.372668 -0.428469 0.406156 0.002742 0.000600 0.222867 0.036914
61 0.413792 0.024766 -0.110106 0.412839 80 0 False {u'ridge__normalize': False, u'ridge__alpha': ... 65 0.024962 0.460997 0.065508 0.372399 -0.421311 0.405123 0.006703 0.002162 0.220465 0.036579
62 0.445696 0.023671 -0.048464 0.407694 80 0.125 True {u'ridge__normalize': True, u'ridge__alpha': 0... 35 0.055168 0.455231 0.089744 0.367681 -0.290706 0.400171 0.019450 0.002229 0.171707 0.036136
63 0.413434 0.029514 -0.024501 0.391382 80 0.125 False {u'ridge__normalize': False, u'ridge__alpha': ... 26 0.054312 0.441162 0.124071 0.346450 -0.252190 0.386535 0.015010 0.004360 0.163349 0.038818
64 0.425328 0.023289 -0.005187 0.395945 80 0.25 True {u'ridge__normalize': True, u'ridge__alpha': 0... 12 0.076155 0.441745 0.102565 0.356860 -0.194596 0.389231 0.016303 0.000725 0.134237 0.034978
65 0.427526 0.028726 -0.013439 0.369207 80 0.25 False {u'ridge__normalize': False, u'ridge__alpha': ... 20 0.060139 0.419041 0.128376 0.321498 -0.229117 0.367083 0.013049 0.006693 0.154887 0.039850
66 0.425267 0.023734 0.023317 0.381993 80 0.375 True {u'ridge__normalize': True, u'ridge__alpha': 0... 6 0.086155 0.425394 0.112130 0.345108 -0.128579 0.375478 0.003574 0.002005 0.107825 0.033099
67 0.443106 0.022585 -0.011585 0.351855 80 0.375 False {u'ridge__normalize': False, u'ridge__alpha': ... 15 0.061751 0.401269 0.126558 0.302654 -0.223348 0.351643 0.020479 0.000085 0.151917 0.040260
68 0.458216 0.024431 0.042636 0.367060 80 0.5 True {u'ridge__normalize': True, u'ridge__alpha': 0... 4 0.093534 0.409945 0.115847 0.330857 -0.081672 0.360377 0.035934 0.001135 0.088285 0.032631
69 0.423068 0.022897 -0.012851 0.338229 80 0.5 False {u'ridge__normalize': False, u'ridge__alpha': ... 18 0.062320 0.386602 0.122567 0.288605 -0.223731 0.339482 0.002709 0.000268 0.150989 0.040017

70 rows × 19 columns

---------- pH
Cross_val_score:  [ 0.7400251   0.77567394  0.7536067 ]
Explained variance score:  0.814266745755
Mean absolute error:  0.289874144105
Mean squared error:  0.164033969394
R2 score:  0.813738036703
mean_fit_time mean_score_time mean_test_score mean_train_score param_pca__n_components param_ridge__alpha param_ridge__normalize params rank_test_score split0_test_score split0_train_score split1_test_score split1_train_score split2_test_score split2_train_score std_fit_time std_score_time std_test_score std_train_score
0 0.422483 0.017436 0.684171 0.720647 20 0 True {u'ridge__normalize': True, u'ridge__alpha': 0... 65 0.646453 0.733411 0.712437 0.710280 0.693770 0.718250 0.054303 0.003305 0.027787 0.009594
1 0.297742 0.015090 0.684171 0.720647 20 0 False {u'ridge__normalize': False, u'ridge__alpha': ... 64 0.646453 0.733411 0.712437 0.710280 0.693770 0.718250 0.006659 0.000514 0.027787 0.009594
2 0.317768 0.022736 0.679800 0.711750 20 0.125 True {u'ridge__normalize': True, u'ridge__alpha': 0... 66 0.659117 0.724356 0.699379 0.701511 0.680985 0.709383 0.018677 0.010535 0.016464 0.009475
3 0.299269 0.016073 0.684198 0.720647 20 0.125 False {u'ridge__normalize': False, u'ridge__alpha': ... 63 0.646510 0.733411 0.712430 0.710280 0.693801 0.718250 0.015072 0.001405 0.027762 0.009594
4 0.318312 0.016976 0.663333 0.691821 20 0.25 True {u'ridge__normalize': True, u'ridge__alpha': 0... 67 0.654005 0.704074 0.676887 0.681869 0.659143 0.689520 0.028375 0.000809 0.009802 0.009210
5 0.305089 0.014730 0.684225 0.720647 20 0.25 False {u'ridge__normalize': False, u'ridge__alpha': ... 62 0.646567 0.733410 0.712423 0.710280 0.693832 0.718250 0.006345 0.000265 0.027738 0.009594
6 0.310762 0.015523 0.641284 0.667045 20 0.375 True {u'ridge__normalize': True, u'ridge__alpha': 0... 69 0.639745 0.678859 0.650521 0.657449 0.633592 0.664827 0.014231 0.000499 0.006992 0.008880
7 0.312237 0.018608 0.684252 0.720646 20 0.375 False {u'ridge__normalize': False, u'ridge__alpha': ... 61 0.646623 0.733410 0.712417 0.710280 0.693862 0.718249 0.031784 0.005134 0.027713 0.009594
8 0.310732 0.015301 0.617015 0.640575 20 0.5 True {u'ridge__normalize': True, u'ridge__alpha': 0... 70 0.620933 0.651921 0.623074 0.631360 0.607021 0.638445 0.026108 0.000223 0.007113 0.008528
9 0.305068 0.015701 0.684279 0.720646 20 0.5 False {u'ridge__normalize': False, u'ridge__alpha': ... 60 0.646680 0.733410 0.712410 0.710279 0.693893 0.718249 0.016110 0.001570 0.027689 0.009594
10 0.327728 0.018435 0.733384 0.782674 30 0 True {u'ridge__normalize': True, u'ridge__alpha': 0... 47 0.714661 0.788172 0.742066 0.786209 0.743498 0.773640 0.025291 0.003054 0.013278 0.006438
11 0.369533 0.016227 0.733384 0.782674 30 0 False {u'ridge__normalize': False, u'ridge__alpha': ... 46 0.714661 0.788172 0.742066 0.786209 0.743498 0.773640 0.044315 0.000496 0.013278 0.006438
12 0.386284 0.017968 0.729447 0.773011 30 0.125 True {u'ridge__normalize': True, u'ridge__alpha': 0... 48 0.723543 0.778442 0.731828 0.776503 0.732994 0.764089 0.035056 0.001901 0.004210 0.006359
13 0.398192 0.019508 0.733561 0.782668 30 0.125 False {u'ridge__normalize': False, u'ridge__alpha': ... 45 0.714731 0.788167 0.742399 0.786203 0.743625 0.773635 0.023456 0.002030 0.013350 0.006438
14 0.356586 0.020661 0.712265 0.751367 30 0.25 True {u'ridge__normalize': True, u'ridge__alpha': 0... 52 0.714723 0.756645 0.710492 0.754761 0.711571 0.742694 0.049788 0.005743 0.001796 0.006181
15 0.330928 0.017064 0.733723 0.782653 30 0.25 False {u'ridge__normalize': False, u'ridge__alpha': ... 44 0.714790 0.788154 0.742713 0.786185 0.743741 0.773621 0.013875 0.000404 0.013421 0.006437
16 0.330281 0.019730 0.688929 0.724458 30 0.375 True {u'ridge__normalize': True, u'ridge__alpha': 0... 57 0.696976 0.729548 0.684344 0.727731 0.685435 0.716096 0.011691 0.002463 0.005719 0.005959
17 0.349550 0.019608 0.733873 0.782629 30 0.375 False {u'ridge__normalize': False, u'ridge__alpha': ... 43 0.714837 0.788132 0.743009 0.786156 0.743845 0.773598 0.033170 0.001935 0.013491 0.006437
18 0.336972 0.016839 0.663103 0.695710 30 0.5 True {u'ridge__normalize': True, u'ridge__alpha': 0... 68 0.674948 0.700597 0.656579 0.698852 0.657737 0.687680 0.019954 0.000959 0.008405 0.005723
19 0.330138 0.021244 0.734009 0.782595 30 0.5 False {u'ridge__normalize': False, u'ridge__alpha': ... 42 0.714873 0.788102 0.743290 0.786117 0.743939 0.773566 0.014303 0.003247 0.013560 0.006436
20 0.413074 0.019672 0.759928 0.808877 40 0 True {u'ridge__normalize': True, u'ridge__alpha': 0... 30 0.747042 0.815273 0.760861 0.806182 0.771932 0.805178 0.009140 0.002249 0.010186 0.004541
21 0.451092 0.017410 0.759922 0.808874 40 0 False {u'ridge__normalize': False, u'ridge__alpha': ... 31 0.747043 0.815273 0.760856 0.806178 0.771917 0.805171 0.009630 0.000299 0.010179 0.004543
22 0.444388 0.017784 0.755666 0.798892 40 0.125 True {u'ridge__normalize': True, u'ridge__alpha': 0... 35 0.756411 0.805210 0.748663 0.796230 0.761921 0.795237 0.017748 0.000306 0.005435 0.004486
23 0.412720 0.017869 0.760110 0.808848 40 0.125 False {u'ridge__normalize': False, u'ridge__alpha': ... 29 0.747082 0.815241 0.761122 0.806156 0.772176 0.805146 0.011461 0.000163 0.010273 0.004539
24 0.387870 0.019705 0.737740 0.776518 40 0.25 True {u'ridge__normalize': True, u'ridge__alpha': 0... 40 0.747242 0.782662 0.725725 0.773933 0.740216 0.772958 0.011531 0.001585 0.008959 0.004363
25 0.417426 0.019815 0.760238 0.808773 40 0.25 False {u'ridge__normalize': False, u'ridge__alpha': ... 28 0.747061 0.815160 0.761332 0.806088 0.772373 0.805070 0.009543 0.003268 0.010366 0.004536
26 0.429918 0.018489 0.713503 0.748715 40 0.375 True {u'ridge__normalize': True, u'ridge__alpha': 0... 51 0.728728 0.754633 0.698271 0.746221 0.713451 0.745292 0.024721 0.001357 0.012438 0.004202
27 0.396800 0.022928 0.760318 0.808655 40 0.375 False {u'ridge__normalize': False, u'ridge__alpha': ... 26 0.746985 0.815034 0.761507 0.805983 0.772513 0.804948 0.007470 0.003650 0.010459 0.004530
28 0.408869 0.021285 0.686698 0.719003 40 0.5 True {u'ridge__normalize': True, u'ridge__alpha': 0... 58 0.705725 0.724688 0.669383 0.716605 0.684912 0.715716 0.004507 0.003565 0.014895 0.004036
29 0.409029 0.020034 0.760364 0.808503 40 0.5 False {u'ridge__normalize': False, u'ridge__alpha': ... 25 0.746861 0.814867 0.761669 0.805850 0.772614 0.804793 0.009160 0.002994 0.010557 0.004521
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
40 0.411543 0.025739 0.762912 0.840117 60 0 True {u'ridge__normalize': True, u'ridge__alpha': 0... 20 0.748544 0.848740 0.786092 0.834856 0.754156 0.836754 0.062133 0.004779 0.016534 0.006147
41 0.400207 0.023301 0.762912 0.840169 60 0 False {u'ridge__normalize': False, u'ridge__alpha': ... 21 0.748384 0.848776 0.786244 0.834933 0.754163 0.836798 0.011986 0.001044 0.016651 0.006134
42 0.374702 0.022615 0.760276 0.829705 60 0.125 True {u'ridge__normalize': True, u'ridge__alpha': 0... 27 0.758740 0.838185 0.773215 0.824631 0.748879 0.826300 0.006672 0.001132 0.009988 0.006034
43 0.370735 0.025204 0.768029 0.839433 60 0.125 False {u'ridge__normalize': False, u'ridge__alpha': ... 16 0.755799 0.847925 0.786578 0.834124 0.761757 0.836249 0.008527 0.005640 0.013328 0.006067
44 0.383371 0.023532 0.743624 0.806459 60 0.25 True {u'ridge__normalize': True, u'ridge__alpha': 0... 38 0.750337 0.814664 0.749252 0.801310 0.731255 0.803404 0.016856 0.004045 0.008749 0.005864
45 0.375609 0.024867 0.770525 0.838013 60 0.25 False {u'ridge__normalize': False, u'ridge__alpha': ... 14 0.758932 0.846131 0.785732 0.832774 0.766957 0.835135 0.015368 0.004141 0.011231 0.005821
46 0.392216 0.027826 0.720112 0.777796 60 0.375 True {u'ridge__normalize': True, u'ridge__alpha': 0... 50 0.731855 0.785731 0.721035 0.772916 0.707400 0.774740 0.036408 0.003427 0.010008 0.005660
47 0.390040 0.021862 0.771557 0.836317 60 0.375 False {u'ridge__normalize': False, u'ridge__alpha': ... 13 0.760262 0.844178 0.784755 0.831233 0.769698 0.833538 0.020771 0.000695 0.010088 0.005638
48 0.386495 0.028286 0.693410 0.746744 60 0.5 True {u'ridge__normalize': True, u'ridge__alpha': 0... 56 0.708988 0.754412 0.690951 0.742091 0.680231 0.743730 0.018027 0.008862 0.011872 0.005463
49 0.402085 0.024489 0.772414 0.834828 60 0.5 False {u'ridge__normalize': False, u'ridge__alpha': ... 12 0.760970 0.842339 0.783878 0.829858 0.772439 0.832287 0.029799 0.001730 0.009355 0.005403
50 0.421190 0.022397 0.768133 0.846805 70 0 True {u'ridge__normalize': True, u'ridge__alpha': 0... 15 0.750166 0.859275 0.791481 0.837868 0.762820 0.843273 0.024344 0.000753 0.017284 0.009089
51 0.411211 0.023270 0.767945 0.846796 70 0 False {u'ridge__normalize': False, u'ridge__alpha': ... 17 0.749868 0.859274 0.791231 0.837800 0.762807 0.843316 0.021539 0.002201 0.017278 0.009106
52 0.414316 0.025500 0.764678 0.836346 70 0.125 True {u'ridge__normalize': True, u'ridge__alpha': 0... 18 0.759108 0.848570 0.776785 0.827599 0.758163 0.832869 0.017179 0.003656 0.008561 0.008908
53 0.412104 0.023697 0.773280 0.845425 70 0.125 False {u'ridge__normalize': False, u'ridge__alpha': ... 11 0.760597 0.857174 0.790588 0.836907 0.768703 0.842196 0.035410 0.001388 0.012667 0.008583
54 0.443269 0.035746 0.746904 0.812931 70 0.25 True {u'ridge__normalize': True, u'ridge__alpha': 0... 37 0.749584 0.824868 0.750938 0.804336 0.740179 0.809588 0.029666 0.006978 0.004783 0.008709
55 0.398059 0.022197 0.775066 0.843092 70 0.25 False {u'ridge__normalize': False, u'ridge__alpha': ... 10 0.764112 0.853894 0.788984 0.835167 0.772144 0.840216 0.022248 0.000549 0.010365 0.007911
56 0.398609 0.022748 0.722978 0.783909 70 0.375 True {u'ridge__normalize': True, u'ridge__alpha': 0... 49 0.731333 0.795529 0.721591 0.775563 0.715976 0.780635 0.006596 0.000629 0.006348 0.008473
57 0.433362 0.021875 0.775720 0.840833 70 0.375 False {u'ridge__normalize': False, u'ridge__alpha': ... 9 0.765394 0.850907 0.787441 0.833397 0.774367 0.838196 0.014451 0.000296 0.009054 0.007388
58 0.416610 0.022233 0.695964 0.752679 70 0.5 True {u'ridge__normalize': True, u'ridge__alpha': 0... 55 0.708151 0.763748 0.690918 0.744777 0.688777 0.749511 0.015113 0.000585 0.008678 0.008062
59 0.452580 0.026330 0.775869 0.838719 70 0.5 False {u'ridge__normalize': False, u'ridge__alpha': ... 8 0.765676 0.848229 0.785946 0.831638 0.776023 0.836290 0.056116 0.003576 0.008279 0.006988
60 0.490411 0.025599 0.785241 0.865563 80 0 True {u'ridge__normalize': True, u'ridge__alpha': 0... 3 0.761098 0.868815 0.816760 0.855637 0.777959 0.872235 0.028592 0.001215 0.023306 0.007156
61 0.488487 0.033497 0.785662 0.865511 80 0 False {u'ridge__normalize': False, u'ridge__alpha': ... 2 0.762501 0.869004 0.817364 0.855777 0.777211 0.871751 0.011594 0.012642 0.023187 0.006973
62 0.484565 0.024072 0.781714 0.854630 80 0.125 True {u'ridge__normalize': True, u'ridge__alpha': 0... 7 0.767801 0.858188 0.798735 0.845003 0.778660 0.860697 0.014219 0.000595 0.012816 0.006883
63 0.492199 0.029475 0.786647 0.859351 80 0.125 False {u'ridge__normalize': False, u'ridge__alpha': ... 1 0.768905 0.864474 0.806407 0.849923 0.784699 0.863655 0.029711 0.003336 0.015377 0.006675
64 0.464702 0.028661 0.763345 0.830844 80 0.25 True {u'ridge__normalize': True, u'ridge__alpha': 0... 19 0.756457 0.833617 0.769855 0.821764 0.763752 0.837151 0.010981 0.006809 0.005479 0.006581
65 0.460331 0.027887 0.785140 0.853389 80 0.25 False {u'ridge__normalize': False, u'ridge__alpha': ... 4 0.770387 0.859550 0.800570 0.844740 0.784522 0.855876 0.010590 0.006172 0.012334 0.006297
66 0.465301 0.024387 0.738363 0.801597 80 0.375 True {u'ridge__normalize': True, u'ridge__alpha': 0... 39 0.737807 0.805717 0.737251 0.792017 0.740035 0.807058 0.015109 0.001440 0.001202 0.006797
67 0.467007 0.025170 0.783674 0.848999 80 0.375 False {u'ridge__normalize': False, u'ridge__alpha': ... 5 0.770287 0.855338 0.796541 0.840913 0.784246 0.850745 0.010951 0.002499 0.010729 0.006017
68 0.472680 0.027830 0.711162 0.769322 80 0.5 True {u'ridge__normalize': True, u'ridge__alpha': 0... 54 0.712945 0.772240 0.705858 0.760655 0.714677 0.775072 0.014944 0.003142 0.003813 0.006237
69 0.458194 0.026129 0.782211 0.845459 80 0.5 False {u'ridge__normalize': False, u'ridge__alpha': ... 6 0.769688 0.851888 0.793143 0.837792 0.783852 0.846696 0.020102 0.003292 0.009648 0.005821

70 rows × 19 columns

---------- SOC
Cross_val_score:  [ 0.91615743  0.88907611  0.86478846]
Explained variance score:  0.907119040988
Mean absolute error:  0.246257375347
Mean squared error:  0.141440162243
R2 score:  0.906180411652
mean_fit_time mean_score_time mean_test_score mean_train_score param_pca__n_components param_ridge__alpha param_ridge__normalize params rank_test_score split0_test_score split0_train_score split1_test_score split1_train_score split2_test_score split2_train_score std_fit_time std_score_time std_test_score std_train_score
0 0.436218 0.017429 0.799626 0.812817 20 0 True {u'ridge__normalize': True, u'ridge__alpha': 0... 56 0.832424 0.798065 0.786214 0.820028 0.780114 0.820358 0.098613 0.002416 0.023369 0.010432
1 0.311620 0.015720 0.799626 0.812817 20 0 False {u'ridge__normalize': False, u'ridge__alpha': ... 55 0.832424 0.798065 0.786214 0.820028 0.780114 0.820358 0.015939 0.000403 0.023369 0.010432
2 0.314333 0.016521 0.791002 0.802782 20 0.125 True {u'ridge__normalize': True, u'ridge__alpha': 0... 58 0.827441 0.788212 0.767458 0.809904 0.777965 0.810230 0.015814 0.001688 0.026170 0.010303
3 0.333721 0.016086 0.799628 0.812817 20 0.125 False {u'ridge__normalize': False, u'ridge__alpha': ... 54 0.832435 0.798064 0.786190 0.820028 0.780132 0.820358 0.022242 0.000371 0.023374 0.010432
4 0.319809 0.016147 0.769641 0.780304 20 0.25 True {u'ridge__normalize': True, u'ridge__alpha': 0... 64 0.807698 0.766142 0.740066 0.787227 0.761011 0.787543 0.004629 0.000729 0.028284 0.010015
5 0.313778 0.015161 0.799630 0.812816 20 0.25 False {u'ridge__normalize': False, u'ridge__alpha': ... 53 0.832446 0.798064 0.786166 0.820027 0.780149 0.820357 0.011658 0.000030 0.023379 0.010432
6 0.314067 0.017530 0.742602 0.752359 20 0.375 True {u'ridge__normalize': True, u'ridge__alpha': 0... 68 0.781125 0.738704 0.709463 0.759034 0.737069 0.759339 0.004870 0.002270 0.029525 0.009656
7 0.412016 0.017353 0.799631 0.812815 20 0.375 False {u'ridge__normalize': False, u'ridge__alpha': ... 52 0.832457 0.798063 0.786141 0.820027 0.780166 0.820356 0.060097 0.002499 0.023384 0.010432
8 0.331978 0.017668 0.713496 0.722504 20 0.5 True {u'ridge__normalize': True, u'ridge__alpha': 0... 70 0.751818 0.709391 0.678330 0.728914 0.710192 0.729207 0.015121 0.002491 0.030102 0.009273
9 0.350113 0.017120 0.799631 0.812814 20 0.5 False {u'ridge__normalize': False, u'ridge__alpha': ... 51 0.832467 0.798062 0.786117 0.820025 0.780183 0.820355 0.021054 0.001698 0.023389 0.010432
10 0.396738 0.021084 0.823940 0.846879 30 0 True {u'ridge__normalize': True, u'ridge__alpha': 0... 43 0.835253 0.843558 0.823200 0.845433 0.813325 0.851647 0.045992 0.005621 0.008970 0.003457
11 0.444506 0.019613 0.823940 0.846879 30 0 False {u'ridge__normalize': False, u'ridge__alpha': ... 44 0.835253 0.843558 0.823200 0.845433 0.813325 0.851647 0.078927 0.001904 0.008970 0.003457
12 0.357798 0.020194 0.815409 0.836424 30 0.125 True {u'ridge__normalize': True, u'ridge__alpha': 0... 46 0.827575 0.833144 0.807183 0.834996 0.811422 0.841133 0.035286 0.004937 0.008791 0.003415
13 0.330392 0.018042 0.824032 0.846878 30 0.125 False {u'ridge__normalize': False, u'ridge__alpha': ... 42 0.835544 0.843556 0.823086 0.845432 0.813421 0.851646 0.009840 0.001127 0.009059 0.003457
14 0.341687 0.017119 0.793620 0.813004 30 0.25 True {u'ridge__normalize': True, u'ridge__alpha': 0... 57 0.806103 0.809815 0.780749 0.811616 0.793958 0.817581 0.013895 0.000510 0.010357 0.003319
15 0.343653 0.020863 0.824119 0.846873 30 0.25 False {u'ridge__normalize': False, u'ridge__alpha': ... 41 0.835827 0.843549 0.822972 0.845429 0.813512 0.851640 0.004093 0.004539 0.009149 0.003458
16 0.336571 0.018548 0.765898 0.783888 30 0.375 True {u'ridge__normalize': True, u'ridge__alpha': 0... 65 0.778400 0.780814 0.750116 0.782550 0.769129 0.788302 0.010934 0.001177 0.011774 0.003200
17 0.352776 0.016510 0.824200 0.846865 30 0.375 False {u'ridge__normalize': False, u'ridge__alpha': ... 40 0.836099 0.843538 0.822857 0.845424 0.813597 0.851632 0.013513 0.000061 0.009238 0.003458
18 0.336952 0.019641 0.735994 0.752782 30 0.5 True {u'ridge__normalize': True, u'ridge__alpha': 0... 69 0.748347 0.749829 0.718397 0.751496 0.741191 0.757020 0.011493 0.004247 0.012770 0.003073
19 0.332671 0.017959 0.824276 0.846853 30 0.5 False {u'ridge__normalize': False, u'ridge__alpha': ... 39 0.836363 0.843523 0.822742 0.845417 0.813676 0.851621 0.012869 0.001382 0.009328 0.003458
20 0.432061 0.022969 0.832804 0.862330 40 0 True {u'ridge__normalize': True, u'ridge__alpha': 0... 36 0.837140 0.857774 0.838185 0.862447 0.823070 0.866770 0.008439 0.002975 0.006889 0.003674
21 0.444260 0.023079 0.832802 0.862330 40 0 False {u'ridge__normalize': False, u'ridge__alpha': ... 37 0.837139 0.857775 0.838186 0.862445 0.823066 0.866770 0.007853 0.006901 0.006892 0.003673
22 0.436367 0.020917 0.824725 0.851684 40 0.125 True {u'ridge__normalize': True, u'ridge__alpha': 0... 38 0.827575 0.847184 0.826544 0.851799 0.820045 0.856068 0.004206 0.003463 0.003333 0.003628
23 0.437776 0.018041 0.833176 0.862315 40 0.125 False {u'ridge__normalize': False, u'ridge__alpha': ... 34 0.837838 0.857761 0.838073 0.862435 0.823600 0.866749 0.003209 0.000109 0.006765 0.003671
24 0.410572 0.019638 0.803037 0.827838 40 0.25 True {u'ridge__normalize': True, u'ridge__alpha': 0... 50 0.804894 0.823464 0.802525 0.827950 0.801686 0.832101 0.008017 0.001446 0.001359 0.003527
25 0.508245 0.022525 0.833494 0.862277 40 0.25 False {u'ridge__normalize': False, u'ridge__alpha': ... 33 0.838481 0.857722 0.837942 0.862403 0.824041 0.866708 0.032281 0.004305 0.006682 0.003669
26 0.475381 0.022969 0.775229 0.798191 40 0.375 True {u'ridge__normalize': True, u'ridge__alpha': 0... 61 0.776406 0.793973 0.773148 0.798299 0.776128 0.802301 0.012955 0.005584 0.001474 0.003401
27 0.608488 0.023772 0.833769 0.862216 40 0.375 False {u'ridge__normalize': False, u'ridge__alpha': ... 32 0.839068 0.857663 0.837797 0.862350 0.824421 0.866634 0.121857 0.001061 0.006624 0.003663
28 0.440309 0.047511 0.745135 0.766515 40 0.5 True {u'ridge__normalize': True, u'ridge__alpha': 0... 67 0.745830 0.762467 0.741980 0.766615 0.747592 0.770464 0.003517 0.032873 0.002342 0.003265
29 0.449943 0.019153 0.834004 0.862138 40 0.5 False {u'ridge__normalize': False, u'ridge__alpha': ... 31 0.839610 0.857586 0.837639 0.862288 0.824742 0.866539 0.016934 0.001299 0.006593 0.003657
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
40 0.395426 0.023020 0.866777 0.905365 60 0 True {u'ridge__normalize': True, u'ridge__alpha': 0... 18 0.882635 0.900767 0.870639 0.906001 0.846994 0.909327 0.013325 0.001578 0.014809 0.003523
41 0.408404 0.023064 0.866895 0.905693 60 0 False {u'ridge__normalize': False, u'ridge__alpha': ... 17 0.882089 0.900770 0.871532 0.906976 0.847004 0.909331 0.007227 0.000964 0.014698 0.003611
42 0.376071 0.022352 0.856558 0.894193 60 0.125 True {u'ridge__normalize': True, u'ridge__alpha': 0... 21 0.872943 0.889646 0.860500 0.894917 0.836167 0.898017 0.005618 0.000234 0.015274 0.003456
43 0.399568 0.022884 0.867625 0.904753 60 0.125 False {u'ridge__normalize': False, u'ridge__alpha': ... 15 0.880510 0.900209 0.871419 0.905428 0.850897 0.908622 0.006989 0.001947 0.012387 0.003468
44 0.383357 0.025123 0.832881 0.869102 60 0.25 True {u'ridge__normalize': True, u'ridge__alpha': 0... 35 0.849352 0.864733 0.836637 0.869756 0.812590 0.872816 0.020733 0.003616 0.015246 0.003332
45 0.419911 0.027339 0.867734 0.903412 60 0.25 False {u'ridge__normalize': False, u'ridge__alpha': ... 14 0.879240 0.898964 0.871142 0.904088 0.852774 0.907184 0.060991 0.008926 0.011073 0.003390
46 0.488417 0.028827 0.803320 0.838050 60 0.375 True {u'ridge__normalize': True, u'ridge__alpha': 0... 49 0.819580 0.833793 0.807079 0.838712 0.783239 0.841645 0.097427 0.008643 0.015077 0.003240
47 0.556733 0.029780 0.867037 0.901894 60 0.375 False {u'ridge__normalize': False, u'ridge__alpha': ... 16 0.877761 0.897635 0.870296 0.902584 0.853013 0.905464 0.190178 0.008498 0.010365 0.003233
48 0.718313 0.028604 0.771883 0.804799 60 0.5 True {u'ridge__normalize': True, u'ridge__alpha': 0... 63 0.787348 0.800626 0.775374 0.805483 0.752867 0.808289 0.144030 0.004880 0.014296 0.003166
49 0.496051 0.033353 0.866223 0.900303 60 0.5 False {u'ridge__normalize': False, u'ridge__alpha': ... 19 0.876408 0.896159 0.869201 0.900946 0.853022 0.903805 0.036063 0.012359 0.009779 0.003154
50 0.419189 0.035623 0.870998 0.919739 70 0 True {u'ridge__normalize': True, u'ridge__alpha': 0... 12 0.889987 0.915001 0.869335 0.925632 0.853599 0.918583 0.004249 0.003822 0.014906 0.004416
51 0.557221 0.048862 0.870853 0.919777 70 0 False {u'ridge__normalize': False, u'ridge__alpha': ... 13 0.890081 0.915153 0.869176 0.925598 0.853227 0.918581 0.102210 0.029824 0.015097 0.004347
52 0.577577 0.026328 0.860805 0.908349 70 0.125 True {u'ridge__normalize': True, u'ridge__alpha': 0... 20 0.883766 0.903644 0.854224 0.914171 0.844336 0.907231 0.150262 0.001705 0.016760 0.004370
53 0.597887 0.043940 0.874335 0.917662 70 0.125 False {u'ridge__normalize': False, u'ridge__alpha': ... 7 0.889970 0.912876 0.875625 0.923144 0.857349 0.916967 0.236610 0.022304 0.013353 0.004220
54 0.582774 0.031498 0.836768 0.882812 70 0.25 True {u'ridge__normalize': True, u'ridge__alpha': 0... 29 0.861440 0.878016 0.827707 0.888579 0.821062 0.881841 0.042324 0.005996 0.017688 0.004366
55 0.647915 0.031742 0.874234 0.914587 70 0.25 False {u'ridge__normalize': False, u'ridge__alpha': ... 8 0.888018 0.909759 0.876128 0.919469 0.858504 0.914533 0.135008 0.001788 0.012127 0.003964
56 0.435086 0.027081 0.807195 0.851250 70 0.375 True {u'ridge__normalize': True, u'ridge__alpha': 0... 48 0.833440 0.846769 0.795889 0.856687 0.792155 0.850295 0.037516 0.002935 0.018656 0.004105
57 0.764890 0.047772 0.873064 0.911547 70 0.375 False {u'ridge__normalize': False, u'ridge__alpha': ... 9 0.885640 0.906757 0.875205 0.915908 0.858298 0.911975 0.125843 0.028274 0.011268 0.003748
58 0.550643 0.025899 0.775210 0.817502 70 0.5 True {u'ridge__normalize': True, u'ridge__alpha': 0... 62 0.801986 0.813315 0.762781 0.822722 0.760758 0.816469 0.101130 0.000871 0.018989 0.003909
59 0.424401 0.025598 0.871700 0.908803 70 0.5 False {u'ridge__normalize': False, u'ridge__alpha': ... 10 0.883682 0.904154 0.873821 0.912714 0.857549 0.909540 0.023981 0.001469 0.010777 0.003533
60 0.498131 0.028893 0.881897 0.930093 80 0 True {u'ridge__normalize': True, u'ridge__alpha': 0... 2 0.898736 0.923730 0.876665 0.938120 0.870223 0.928429 0.018005 0.001662 0.012217 0.005992
61 0.841252 0.035277 0.881692 0.930047 80 0 False {u'ridge__normalize': False, u'ridge__alpha': ... 3 0.898538 0.923583 0.876305 0.938124 0.870168 0.928435 0.059262 0.011904 0.012194 0.006045
62 0.572404 0.029279 0.871372 0.918565 80 0.125 True {u'ridge__normalize': True, u'ridge__alpha': 0... 11 0.892450 0.912270 0.857650 0.926478 0.863934 0.916947 0.105349 0.004278 0.015151 0.005912
63 0.486728 0.028171 0.883353 0.925626 80 0.125 False {u'ridge__normalize': False, u'ridge__alpha': ... 1 0.896993 0.919476 0.883187 0.932723 0.869825 0.924678 0.015178 0.003812 0.011095 0.005450
64 0.492371 0.028080 0.847230 0.892924 80 0.25 True {u'ridge__normalize': True, u'ridge__alpha': 0... 23 0.870689 0.886772 0.828193 0.900644 0.842717 0.891355 0.016785 0.002523 0.017645 0.005771
65 0.512443 0.026338 0.880944 0.920533 80 0.25 False {u'ridge__normalize': False, u'ridge__alpha': ... 4 0.893089 0.914648 0.882120 0.926652 0.867575 0.920298 0.018101 0.001429 0.010452 0.004904
66 0.490478 0.026826 0.817103 0.860877 80 0.375 True {u'ridge__normalize': True, u'ridge__alpha': 0... 45 0.842056 0.855011 0.794907 0.868259 0.814249 0.859362 0.018104 0.001601 0.019360 0.005514
67 0.517873 0.025710 0.878414 0.916273 80 0.375 False {u'ridge__normalize': False, u'ridge__alpha': ... 5 0.889715 0.910689 0.879949 0.921601 0.865535 0.916530 0.029381 0.001455 0.009934 0.004459
68 0.488117 0.028046 0.784422 0.826638 80 0.5 True {u'ridge__normalize': True, u'ridge__alpha': 0... 59 0.809393 0.820842 0.760852 0.833806 0.782925 0.825266 0.013982 0.001934 0.019851 0.005381
69 0.492939 0.026598 0.876143 0.912744 80 0.5 False {u'ridge__normalize': False, u'ridge__alpha': ... 6 0.886923 0.907358 0.877790 0.917465 0.863673 0.913410 0.022684 0.001746 0.009566 0.004153

70 rows × 19 columns

---------- Sand
Cross_val_score:  [ 0.86318998  0.82905191  0.87058466]
Explained variance score:  0.883032225871
Mean absolute error:  0.239758465292
Mean squared error:  0.115479041393
R2 score:  0.882849560337
mean_fit_time mean_score_time mean_test_score mean_train_score param_pca__n_components param_ridge__alpha param_ridge__normalize params rank_test_score split0_test_score split0_train_score split1_test_score split1_train_score split2_test_score split2_train_score std_fit_time std_score_time std_test_score std_train_score
0 0.342916 0.018127 0.717685 0.751043 20 0 True {u'ridge__normalize': True, u'ridge__alpha': 0... 65 0.705694 0.763371 0.724223 0.749680 0.723185 0.740078 0.026075 0.003583 0.008506 0.009558
1 0.327113 0.015242 0.717685 0.751043 20 0 False {u'ridge__normalize': False, u'ridge__alpha': ... 64 0.705694 0.763371 0.724223 0.749680 0.723185 0.740078 0.013310 0.000142 0.008506 0.009558
2 0.303656 0.015412 0.712572 0.741771 20 0.125 True {u'ridge__normalize': True, u'ridge__alpha': 0... 66 0.702483 0.753947 0.721245 0.740425 0.714028 0.730941 0.004153 0.000141 0.007731 0.009440
3 0.295314 0.015306 0.717718 0.751043 20 0.125 False {u'ridge__normalize': False, u'ridge__alpha': ... 63 0.705706 0.763371 0.724351 0.749680 0.723143 0.740078 0.006458 0.000221 0.008524 0.009558
4 0.296860 0.016314 0.694990 0.721001 20 0.25 True {u'ridge__normalize': True, u'ridge__alpha': 0... 67 0.686261 0.732836 0.704874 0.719693 0.693869 0.710475 0.004760 0.000772 0.007642 0.009176
5 0.315843 0.015508 0.717750 0.751042 20 0.25 False {u'ridge__normalize': False, u'ridge__alpha': ... 62 0.705717 0.763370 0.724479 0.749679 0.723100 0.740078 0.018857 0.000294 0.008544 0.009558
6 0.313852 0.016856 0.671685 0.695180 20 0.375 True {u'ridge__normalize': True, u'ridge__alpha': 0... 69 0.663962 0.706591 0.682232 0.693919 0.668890 0.685031 0.031138 0.001653 0.007717 0.008847
7 0.304668 0.015630 0.717781 0.751041 20 0.375 False {u'ridge__normalize': False, u'ridge__alpha': ... 61 0.705728 0.763369 0.724606 0.749678 0.723058 0.740077 0.011278 0.000532 0.008563 0.009558
8 0.299836 0.015279 0.646131 0.667594 20 0.5 True {u'ridge__normalize': True, u'ridge__alpha': 0... 70 0.639174 0.678552 0.657004 0.666382 0.642242 0.657847 0.006047 0.000130 0.007782 0.008496
9 0.306051 0.015208 0.717813 0.751040 20 0.5 False {u'ridge__normalize': False, u'ridge__alpha': ... 60 0.705738 0.763368 0.724732 0.749676 0.723015 0.740076 0.006877 0.000069 0.008583 0.009558
10 0.327514 0.019950 0.765231 0.807077 30 0 True {u'ridge__normalize': True, u'ridge__alpha': 0... 49 0.768001 0.806540 0.738767 0.818617 0.788916 0.796075 0.003152 0.003813 0.020554 0.009211
11 0.356175 0.017636 0.765231 0.807077 30 0 False {u'ridge__normalize': False, u'ridge__alpha': ... 50 0.768001 0.806540 0.738766 0.818617 0.788915 0.796075 0.032064 0.001043 0.020554 0.009211
12 0.321720 0.018632 0.761768 0.797113 30 0.125 True {u'ridge__normalize': True, u'ridge__alpha': 0... 52 0.759306 0.796583 0.743733 0.808511 0.782275 0.786247 0.010005 0.002703 0.015821 0.009097
13 0.333622 0.018065 0.765391 0.807074 30 0.125 False {u'ridge__normalize': False, u'ridge__alpha': ... 48 0.767986 0.806537 0.739271 0.818614 0.788906 0.796072 0.016797 0.001215 0.020333 0.009211
14 0.325341 0.017164 0.744258 0.774794 30 0.25 True {u'ridge__normalize': True, u'ridge__alpha': 0... 56 0.738439 0.774278 0.731997 0.785872 0.762362 0.764232 0.005089 0.000458 0.013057 0.008842
15 0.328952 0.017030 0.765542 0.807066 30 0.25 False {u'ridge__normalize': False, u'ridge__alpha': ... 47 0.767963 0.806529 0.739763 0.818605 0.788890 0.796063 0.010762 0.000573 0.020116 0.009210
16 0.408038 0.018024 0.720187 0.747047 30 0.375 True {u'ridge__normalize': True, u'ridge__alpha': 0... 59 0.712167 0.746549 0.712008 0.757728 0.736417 0.736863 0.057215 0.002158 0.011465 0.008525
17 0.356321 0.016590 0.765684 0.807052 30 0.375 False {u'ridge__normalize': False, u'ridge__alpha': ... 46 0.767934 0.806516 0.740242 0.818589 0.788867 0.796049 0.033355 0.000135 0.019902 0.009210
18 0.352246 0.019397 0.693427 0.717402 30 0.5 True {u'ridge__normalize': True, u'ridge__alpha': 0... 68 0.683951 0.716924 0.688210 0.727660 0.708158 0.707622 0.045720 0.002293 0.010551 0.008187
19 0.434964 0.018961 0.765818 0.807032 30 0.5 False {u'ridge__normalize': False, u'ridge__alpha': ... 45 0.767898 0.806499 0.740709 0.818569 0.788837 0.796029 0.040812 0.001014 0.019691 0.009209
20 0.549796 0.019889 0.805833 0.852250 40 0 True {u'ridge__normalize': True, u'ridge__alpha': 0... 36 0.794452 0.860237 0.785728 0.858806 0.837364 0.837706 0.091642 0.001119 0.022557 0.010300
21 0.415316 0.019559 0.805835 0.852251 40 0 False {u'ridge__normalize': False, u'ridge__alpha': ... 35 0.794454 0.860238 0.785727 0.858807 0.837368 0.837708 0.017682 0.000545 0.022559 0.010300
22 0.449368 0.019546 0.801703 0.841727 40 0.125 True {u'ridge__normalize': True, u'ridge__alpha': 0... 38 0.788292 0.849617 0.788918 0.848201 0.827952 0.827363 0.024983 0.001140 0.018544 0.010173
23 0.447652 0.019398 0.806118 0.852215 40 0.125 False {u'ridge__normalize': False, u'ridge__alpha': ... 34 0.794813 0.860200 0.786401 0.858765 0.837184 0.837681 0.043825 0.001736 0.022213 0.010294
24 0.447779 0.018987 0.782974 0.818165 40 0.25 True {u'ridge__normalize': True, u'ridge__alpha': 0... 42 0.768482 0.825839 0.775141 0.824456 0.805355 0.804200 0.019816 0.000862 0.016043 0.009891
25 0.424559 0.019177 0.806317 0.852112 40 0.25 False {u'ridge__normalize': False, u'ridge__alpha': ... 33 0.795093 0.860097 0.786958 0.858655 0.836943 0.837583 0.024774 0.000260 0.021889 0.010290
26 0.439985 0.019301 0.757431 0.788859 40 0.375 True {u'ridge__normalize': True, u'ridge__alpha': 0... 53 0.742398 0.796252 0.753072 0.794929 0.776881 0.775396 0.018789 0.000395 0.014415 0.009535
27 0.463641 0.018253 0.806440 0.851959 40 0.375 False {u'ridge__normalize': False, u'ridge__alpha': ... 32 0.795312 0.859940 0.787420 0.858489 0.836631 0.837449 0.039824 0.000775 0.021570 0.010278
28 0.438939 0.018723 0.729149 0.757555 40 0.5 True {u'ridge__normalize': True, u'ridge__alpha': 0... 58 0.713907 0.764649 0.727262 0.763383 0.746338 0.744632 0.027545 0.000752 0.013311 0.009152
29 0.416260 0.018764 0.806543 0.851767 40 0.5 False {u'ridge__normalize': False, u'ridge__alpha': ... 31 0.795474 0.859738 0.787805 0.858275 0.836392 0.837288 0.015206 0.000741 0.021317 0.010255
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
40 0.375847 0.020538 0.825369 0.881447 60 0 True {u'ridge__normalize': True, u'ridge__alpha': 0... 19 0.822989 0.884271 0.803520 0.886425 0.849608 0.873646 0.009066 0.000211 0.018879 0.005586
41 0.381019 0.023118 0.825369 0.881438 60 0 False {u'ridge__normalize': False, u'ridge__alpha': ... 20 0.823010 0.884259 0.803428 0.886372 0.849678 0.873684 0.006952 0.001493 0.018943 0.005550
42 0.393197 0.023138 0.821582 0.870518 60 0.125 True {u'ridge__normalize': True, u'ridge__alpha': 0... 21 0.815706 0.873316 0.807728 0.875420 0.841334 0.862818 0.029874 0.002078 0.014329 0.005512
43 0.387475 0.027809 0.827144 0.881030 60 0.125 False {u'ridge__normalize': False, u'ridge__alpha': ... 18 0.822581 0.883842 0.807218 0.885936 0.851651 0.873313 0.029429 0.005375 0.018414 0.005524
44 0.382501 0.024263 0.802851 0.846164 60 0.25 True {u'ridge__normalize': True, u'ridge__alpha': 0... 37 0.794847 0.848871 0.794276 0.850868 0.819462 0.838753 0.008359 0.003479 0.011736 0.005303
45 0.393198 0.020258 0.827730 0.879978 60 0.25 False {u'ridge__normalize': False, u'ridge__alpha': ... 16 0.821949 0.883153 0.809028 0.884735 0.852235 0.872045 0.028741 0.000070 0.018097 0.005646
46 0.367736 0.020918 0.776828 0.815844 60 0.375 True {u'ridge__normalize': True, u'ridge__alpha': 0... 43 0.767669 0.818522 0.772070 0.820378 0.790782 0.808632 0.008756 0.000573 0.010020 0.005156
47 0.400183 0.024038 0.827801 0.878802 60 0.375 False {u'ridge__normalize': False, u'ridge__alpha': ... 15 0.820795 0.882106 0.810070 0.883547 0.852565 0.870755 0.023295 0.005042 0.018034 0.005721
48 0.362745 0.021705 0.747887 0.783467 60 0.5 True {u'ridge__normalize': True, u'ridge__alpha': 0... 55 0.737701 0.785955 0.745861 0.787846 0.760137 0.776600 0.000644 0.001943 0.009274 0.004916
49 0.376146 0.020998 0.827606 0.877499 60 0.5 False {u'ridge__normalize': False, u'ridge__alpha': ... 17 0.819970 0.881134 0.810426 0.882052 0.852451 0.869310 0.016574 0.000764 0.017979 0.005803
50 0.402064 0.024904 0.834492 0.889724 70 0 True {u'ridge__normalize': True, u'ridge__alpha': 0... 10 0.833021 0.889985 0.804207 0.899799 0.866253 0.879388 0.012912 0.002065 0.025335 0.008335
51 0.400296 0.022985 0.834382 0.889694 70 0 False {u'ridge__normalize': False, u'ridge__alpha': ... 12 0.832823 0.889941 0.804260 0.899782 0.866068 0.879358 0.027130 0.000950 0.025241 0.008340
52 0.406284 0.024797 0.830841 0.878723 70 0.125 True {u'ridge__normalize': True, u'ridge__alpha': 0... 14 0.825982 0.878963 0.811662 0.888651 0.854899 0.868557 0.030164 0.003596 0.017973 0.008205
53 0.375663 0.026882 0.835885 0.888368 70 0.125 False {u'ridge__normalize': False, u'ridge__alpha': ... 8 0.831669 0.888989 0.811917 0.897964 0.864085 0.878150 0.004621 0.006672 0.021493 0.008101
54 0.387577 0.022224 0.811736 0.854136 70 0.25 True {u'ridge__normalize': True, u'ridge__alpha': 0... 30 0.804842 0.854363 0.800821 0.863815 0.829570 0.844231 0.010595 0.000702 0.012705 0.007997
55 0.409307 0.022568 0.835371 0.886280 70 0.25 False {u'ridge__normalize': False, u'ridge__alpha': ... 9 0.829602 0.887433 0.814372 0.895205 0.862162 0.876200 0.020724 0.001054 0.019921 0.007801
56 0.390785 0.022313 0.785504 0.823595 70 0.375 True {u'ridge__normalize': True, u'ridge__alpha': 0... 41 0.777304 0.823738 0.779748 0.832939 0.799491 0.814107 0.009090 0.000411 0.009931 0.007689
57 0.393170 0.023273 0.834445 0.884274 70 0.375 False {u'ridge__normalize': False, u'ridge__alpha': ... 11 0.827645 0.885921 0.815138 0.892553 0.860579 0.874347 0.020200 0.001178 0.019155 0.007523
58 0.375196 0.026777 0.756183 0.790875 70 0.5 True {u'ridge__normalize': True, u'ridge__alpha': 0... 54 0.747155 0.791110 0.754170 0.799787 0.767259 0.781729 0.004200 0.005763 0.008332 0.007374
59 0.415088 0.022773 0.833386 0.882307 70 0.5 False {u'ridge__normalize': False, u'ridge__alpha': ... 13 0.825958 0.884434 0.815165 0.890166 0.859063 0.872321 0.031106 0.001419 0.018667 0.007439
60 0.473929 0.024130 0.844443 0.896509 80 0 True {u'ridge__normalize': True, u'ridge__alpha': 0... 2 0.849029 0.896258 0.817566 0.905128 0.866718 0.888142 0.020667 0.000809 0.020315 0.006937
61 0.475258 0.025253 0.844479 0.896420 80 0 False {u'ridge__normalize': False, u'ridge__alpha': ... 1 0.849220 0.896059 0.817506 0.905084 0.866692 0.888117 0.032309 0.000883 0.020346 0.006932
62 0.471297 0.025263 0.840073 0.885383 80 0.125 True {u'ridge__normalize': True, u'ridge__alpha': 0... 5 0.843015 0.885094 0.823460 0.893916 0.853732 0.877140 0.020013 0.000440 0.012525 0.006852
63 0.504618 0.034408 0.843110 0.893525 80 0.125 False {u'ridge__normalize': False, u'ridge__alpha': ... 3 0.842264 0.893776 0.819384 0.901883 0.867684 0.884915 0.016999 0.009561 0.019715 0.006929
64 0.482595 0.025755 0.820336 0.860619 80 0.25 True {u'ridge__normalize': True, u'ridge__alpha': 0... 25 0.822191 0.860327 0.810753 0.868913 0.828058 0.852616 0.027897 0.002226 0.007182 0.006657
65 0.471377 0.029691 0.840686 0.890135 80 0.25 False {u'ridge__normalize': False, u'ridge__alpha': ... 4 0.837470 0.891010 0.819246 0.898053 0.865356 0.881341 0.004810 0.006196 0.018950 0.006851
66 0.481739 0.025373 0.793495 0.829778 80 0.375 True {u'ridge__normalize': True, u'ridge__alpha': 0... 40 0.794759 0.829500 0.788563 0.837729 0.797157 0.822105 0.010791 0.001301 0.003619 0.006381
67 0.483793 0.026728 0.838527 0.887276 80 0.375 False {u'ridge__normalize': False, u'ridge__alpha': ... 6 0.833707 0.888668 0.818671 0.894823 0.863221 0.878337 0.029412 0.003457 0.018494 0.006802
68 0.492897 0.025333 0.763966 0.796841 80 0.5 True {u'ridge__normalize': True, u'ridge__alpha': 0... 51 0.764461 0.796529 0.762762 0.804536 0.764673 0.789457 0.025573 0.001033 0.000855 0.006160
69 0.471107 0.028771 0.836787 0.884831 80 0.5 False {u'ridge__normalize': False, u'ridge__alpha': ... 7 0.830931 0.886657 0.818017 0.892051 0.861436 0.875785 0.018583 0.003879 0.018194 0.006765

70 rows × 19 columns

Completed in -1093.29 sec

In [91]:
print len(y_pipelines_ridge)
print y_scores_ridge


5
[0.16877420396826684, 1.0734344300231238, 0.16403396939374118, 0.14144016224282882, 0.11547904139250162]

In [92]:
# SVR with PCA combinations

y_pipelines_svr = []
y_scores_svr = []

start = time.time()
for ind, y in enumerate(y_vars):
    
    X_train, X_test, y_train, y_test = train_test_split(X_wDepth, y, test_size=0.33, random_state=42)
    
    # set up the train and test data
    print '\n----------', y_var_labels[ind]

    pca = PCA()
    svr = SVR()
    steps = [('pca', pca), ('svr', svr)]
    pipeline = Pipeline(steps)

    parameters = dict(pca__n_components=list(range(20, 90, 10)),
                     svr__kernel=list(['rbf']),
                      svr__C=np.logspace(-2, 10, 13))
                     #svr__C=list([1e3]))

    cv = GridSearchCV(pipeline, param_grid=parameters, verbose=0)
    cv.fit(X_train, y_train)   

    print 'Cross_val_score: ', cross_val_score(cv, X_test, y_test)
    
    y_predictions = cv.predict(X_test)
    mse = mean_squared_error(y_test, y_predictions)
    print 'Explained variance score: ', explained_variance_score(y_test, y_predictions)
    print 'Mean absolute error: ', mean_absolute_error(y_test, y_predictions)
    print 'Mean squared error: ', mse
    print 'R2 score: ', r2_score(y_test, y_predictions)
    
    display(pd.DataFrame.from_dict(cv.cv_results_))
    
    # capture the best pipeline estimator and mse value
    y_pipelines_svr.append(cv.best_estimator_)
    y_scores_svr.append(mse)
    
print 'Completed in %0.2f sec' % (start-time.time())


---------- Ca
Cross_val_score:  [ 0.86622329  0.72206497  0.87348425]
Explained variance score:  0.9083982785
Mean absolute error:  0.165606370284
Mean squared error:  0.156309305333
R2 score:  0.908306038347
mean_fit_time mean_score_time mean_test_score mean_train_score param_pca__n_components param_svr__C param_svr__kernel params rank_test_score split0_test_score split0_train_score split1_test_score split1_train_score split2_test_score split2_train_score std_fit_time std_score_time std_test_score std_train_score
0 0.449781 0.025146 -0.024150 -0.017155 20 0.01 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 91 -0.010265 -0.027662 -0.039275 -0.007873 -0.022962 -0.015929 0.098105 0.002965 0.011877 0.008125
1 0.329333 0.020562 0.231078 0.262848 20 0.1 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 84 0.330549 0.221540 0.212867 0.239478 0.149433 0.327525 0.014554 0.000893 0.075074 0.046316
2 0.426314 0.024077 0.664136 0.762535 20 1 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 77 0.865818 0.698649 0.654940 0.701448 0.470869 0.887508 0.155428 0.001590 0.161420 0.088377
3 0.768561 0.038767 0.770284 0.990535 20 10 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 61 0.868729 0.992471 0.851927 0.990182 0.589813 0.988952 0.066672 0.004003 0.127673 0.001458
4 0.769867 0.032634 0.766036 0.991531 20 100 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 68 0.866424 0.993089 0.841483 0.992552 0.589813 0.988952 0.130239 0.002767 0.124904 0.001837
5 0.360069 0.020572 0.766039 0.991532 20 1000 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 62 0.866430 0.993091 0.841483 0.992552 0.589813 0.988952 0.074717 0.000777 0.124906 0.001838
6 0.458154 0.038091 0.766036 0.991531 20 10000 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 70 0.866424 0.993089 0.841483 0.992552 0.589813 0.988952 0.100855 0.023466 0.124904 0.001837
7 0.416961 0.021555 0.766036 0.991531 20 100000 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 66 0.866424 0.993089 0.841483 0.992552 0.589813 0.988952 0.099268 0.001304 0.124904 0.001837
8 0.360876 0.023488 0.766036 0.991531 20 1e+06 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 65 0.866424 0.993089 0.841483 0.992552 0.589813 0.988952 0.037957 0.004783 0.124904 0.001837
9 0.386401 0.025548 0.766036 0.991531 20 1e+07 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 63 0.866424 0.993089 0.841483 0.992552 0.589813 0.988952 0.042221 0.006265 0.124904 0.001837
10 0.343017 0.020715 0.766036 0.991531 20 1e+08 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 67 0.866424 0.993089 0.841483 0.992552 0.589813 0.988952 0.023642 0.000999 0.124904 0.001837
11 0.332389 0.026842 0.766036 0.991531 20 1e+09 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 69 0.866424 0.993089 0.841483 0.992552 0.589813 0.988952 0.028423 0.008576 0.124904 0.001837
12 0.329450 0.020719 0.766036 0.991531 20 1e+10 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 64 0.866424 0.993089 0.841483 0.992552 0.589813 0.988952 0.018440 0.000485 0.124904 0.001837
13 0.406023 0.029439 0.005118 0.009112 30 0.01 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 90 0.028027 -0.005216 -0.008096 0.014912 -0.004667 0.017641 0.068041 0.004770 0.016291 0.010193
14 0.325937 0.024519 0.302376 0.320126 30 0.1 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 83 0.418871 0.272972 0.290493 0.292326 0.197311 0.395079 0.012789 0.001730 0.090869 0.053586
15 0.374772 0.023190 0.701433 0.772824 30 1 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 76 0.884512 0.716919 0.707968 0.712173 0.511109 0.889378 0.080159 0.000971 0.152560 0.082439
16 0.386019 0.024238 0.809492 0.990014 30 10 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 51 0.888863 0.991961 0.892312 0.988416 0.646993 0.989665 0.061120 0.001473 0.114801 0.001468
17 0.328993 0.022570 0.800224 0.992026 30 100 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 53 0.880930 0.993555 0.872430 0.992858 0.646998 0.989665 0.009523 0.000132 0.108297 0.001693
18 0.383228 0.026877 0.800218 0.992025 30 1000 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 60 0.880930 0.993555 0.872418 0.992857 0.646994 0.989664 0.040282 0.005263 0.108297 0.001694
19 0.332045 0.022809 0.800224 0.992026 30 10000 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 52 0.880930 0.993555 0.872435 0.992858 0.646994 0.989664 0.012007 0.000351 0.108301 0.001694
20 0.427650 0.026303 0.800218 0.992025 30 100000 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 59 0.880930 0.993555 0.872418 0.992857 0.646994 0.989664 0.072877 0.003064 0.108297 0.001694
21 0.554558 0.027532 0.800218 0.992025 30 1e+06 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 58 0.880930 0.993555 0.872418 0.992857 0.646994 0.989664 0.038212 0.001810 0.108297 0.001694
22 0.475274 0.065564 0.800222 0.992026 30 1e+07 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 55 0.880930 0.993555 0.872430 0.992858 0.646993 0.989665 0.063567 0.044741 0.108300 0.001694
23 0.414809 0.023576 0.800218 0.992025 30 1e+08 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 57 0.880930 0.993555 0.872418 0.992857 0.646994 0.989664 0.129255 0.001615 0.108297 0.001694
24 0.588993 0.033377 0.800218 0.992025 30 1e+09 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 56 0.880930 0.993555 0.872418 0.992857 0.646994 0.989664 0.109186 0.009391 0.108297 0.001694
25 0.432592 0.031750 0.800222 0.992025 30 1e+10 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 54 0.880930 0.993555 0.872435 0.992858 0.646990 0.989664 0.066300 0.006126 0.108303 0.001694
26 0.587252 0.030975 0.026361 0.028201 40 0.01 rbf {u'pca__n_components': 40, u'svr__kernel': u'r... 89 0.055097 0.011148 0.014695 0.031460 0.009181 0.041996 0.088539 0.001021 0.020482 0.012803
27 0.478530 0.025496 0.335628 0.345434 40 0.1 rbf {u'pca__n_components': 40, u'svr__kernel': u'r... 82 0.461361 0.298345 0.323563 0.310699 0.221471 0.427259 0.092089 0.001580 0.098336 0.058078
28 0.518283 0.027771 0.720265 0.775820 40 1 rbf {u'pca__n_components': 40, u'svr__kernel': u'r... 75 0.889700 0.724431 0.734778 0.717772 0.535660 0.885256 0.047062 0.003854 0.144946 0.077431
29 0.444665 0.029398 0.837239 0.989055 40 10 rbf {u'pca__n_components': 40, u'svr__kernel': u'r... 32 0.900356 0.990894 0.915473 0.986346 0.695643 0.989925 0.062767 0.003170 0.100217 0.001956
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
61 0.457089 0.040063 0.841678 0.992491 60 1e+07 rbf {u'pca__n_components': 60, u'svr__kernel': u'r... 25 0.894220 0.993719 0.871674 0.993417 0.758936 0.990338 0.052010 0.002676 0.059171 0.001528
62 0.464652 0.040826 0.841669 0.992491 60 1e+08 rbf {u'pca__n_components': 60, u'svr__kernel': u'r... 29 0.894214 0.993720 0.871666 0.993415 0.758925 0.990338 0.041436 0.007822 0.059174 0.001528
63 0.498757 0.034991 0.841666 0.992490 60 1e+09 rbf {u'pca__n_components': 60, u'svr__kernel': u'r... 31 0.894224 0.993720 0.871654 0.993416 0.758917 0.990335 0.089284 0.008300 0.059178 0.001529
64 0.451944 0.032297 0.841666 0.992492 60 1e+10 rbf {u'pca__n_components': 60, u'svr__kernel': u'r... 30 0.894209 0.993719 0.871664 0.993416 0.758923 0.990340 0.024328 0.002463 0.059172 0.001526
65 0.527143 0.049074 0.054448 0.052737 70 0.01 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 86 0.090219 0.033598 0.046621 0.054297 0.026364 0.070315 0.100247 0.010120 0.026657 0.015030
66 0.365749 0.033111 0.361435 0.361318 70 0.1 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 79 0.483447 0.315699 0.356956 0.321361 0.243428 0.446895 0.016584 0.001537 0.098070 0.060556
67 0.381295 0.031279 0.726007 0.760877 70 1 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 73 0.886596 0.714763 0.735198 0.703502 0.555606 0.864366 0.016502 0.001405 0.135325 0.073322
68 0.390800 0.031391 0.854853 0.979653 70 10 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 2 0.913900 0.983100 0.918446 0.978686 0.731984 0.977174 0.027616 0.000687 0.086817 0.002514
69 0.421953 0.033184 0.851440 0.992138 70 100 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 5 0.894220 0.993715 0.880895 0.992050 0.779038 0.990648 0.033419 0.001275 0.051435 0.001254
70 0.406818 0.032247 0.846870 0.992561 70 1000 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 19 0.894201 0.993711 0.867161 0.993321 0.779063 0.990650 0.028021 0.000831 0.049157 0.001360
71 0.407044 0.032708 0.846873 0.992561 70 10000 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 17 0.894213 0.993712 0.867165 0.993319 0.779059 0.990651 0.013945 0.001491 0.049163 0.001360
72 0.394811 0.033608 0.846883 0.992562 70 100000 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 15 0.894207 0.993715 0.867205 0.993320 0.779054 0.990652 0.014050 0.001264 0.049169 0.001361
73 0.412599 0.032063 0.846873 0.992563 70 1e+06 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 18 0.894208 0.993715 0.867179 0.993323 0.779047 0.990650 0.018241 0.000630 0.049168 0.001362
74 0.397391 0.033822 0.846876 0.992560 70 1e+07 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 16 0.894210 0.993713 0.867185 0.993319 0.779050 0.990646 0.007527 0.001024 0.049168 0.001362
75 0.395845 0.031706 0.846856 0.992563 70 1e+08 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 22 0.894213 0.993717 0.867116 0.993319 0.779057 0.990655 0.005385 0.000578 0.049157 0.001359
76 0.398313 0.032051 0.846859 0.992561 70 1e+09 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 21 0.894194 0.993715 0.867145 0.993316 0.779052 0.990653 0.026527 0.000677 0.049157 0.001359
77 0.400062 0.033171 0.846867 0.992563 70 1e+10 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 20 0.894203 0.993717 0.867172 0.993321 0.779042 0.990651 0.010594 0.000806 0.049168 0.001361
78 0.464866 0.044034 0.058858 0.056428 80 0.01 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 85 0.096713 0.037869 0.050620 0.057140 0.029094 0.074276 0.025250 0.007226 0.028221 0.014872
79 0.435877 0.037441 0.362230 0.360391 80 0.1 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 78 0.482796 0.315803 0.358652 0.319467 0.244774 0.445904 0.024011 0.003308 0.097236 0.060485
80 0.440991 0.033068 0.723698 0.753991 80 1 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 74 0.885473 0.708309 0.731492 0.697748 0.553500 0.855917 0.002031 0.000224 0.135683 0.072201
81 0.471085 0.033816 0.853080 0.975501 80 10 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 4 0.915689 0.980536 0.914918 0.976703 0.728391 0.969265 0.006770 0.000128 0.088084 0.004679
82 0.470255 0.040069 0.857951 0.991849 80 100 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 1 0.897413 0.993460 0.881619 0.991175 0.794669 0.990911 0.020433 0.006905 0.045167 0.001145
83 0.481353 0.035756 0.850204 0.992627 80 1000 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 12 0.893551 0.993662 0.862217 0.993313 0.794676 0.990905 0.029912 0.000424 0.041261 0.001226
84 0.470426 0.034817 0.850202 0.992625 80 10000 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 13 0.893557 0.993660 0.862203 0.993308 0.794678 0.990907 0.014386 0.000505 0.041261 0.001223
85 0.460048 0.035143 0.850211 0.992627 80 100000 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 10 0.893569 0.993661 0.862217 0.993309 0.794680 0.990910 0.003397 0.000581 0.041265 0.001222
86 0.466133 0.037537 0.850192 0.992627 80 1e+06 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 14 0.893547 0.993660 0.862194 0.993309 0.794667 0.990913 0.010164 0.002900 0.041261 0.001221
87 0.541402 0.037421 0.850216 0.992625 80 1e+07 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 7 0.893576 0.993660 0.862223 0.993307 0.794680 0.990907 0.095271 0.000846 0.041268 0.001223
88 0.535644 0.036288 0.850204 0.992629 80 1e+08 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 11 0.893549 0.993662 0.862206 0.993312 0.794689 0.990913 0.097639 0.001476 0.041253 0.001222
89 0.475289 0.035126 0.850212 0.992627 80 1e+09 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 9 0.893564 0.993662 0.862225 0.993309 0.794680 0.990910 0.014460 0.000879 0.041264 0.001223
90 0.493106 0.036588 0.850216 0.992624 80 1e+10 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 8 0.893583 0.993662 0.862206 0.993308 0.794689 0.990903 0.009631 0.001994 0.041265 0.001226

91 rows × 19 columns

---------- P
Cross_val_score:  [ 0.14201859  0.29246724  0.37196137]
Explained variance score:  0.0381591115853
Mean absolute error:  0.407893856659
Mean squared error:  1.17043179738
R2 score:  0.0365333451692
mean_fit_time mean_score_time mean_test_score mean_train_score param_pca__n_components param_svr__C param_svr__kernel params rank_test_score split0_test_score split0_train_score split1_test_score split1_train_score split2_test_score split2_train_score std_fit_time std_score_time std_test_score std_train_score
0 0.354222 0.019937 -0.032051 -0.026674 20 0.01 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 46 -0.034373 -0.024538 -0.038577 -0.025434 -0.023195 -0.030050 0.054165 0.000204 0.006488 0.002415
1 0.296311 0.021351 0.019008 0.046164 20 0.1 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 24 0.001393 0.058063 -0.001247 0.043725 0.056948 0.036703 0.010814 0.001829 0.026823 0.008889
2 0.308382 0.020468 0.126979 0.294617 20 1 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 8 0.085738 0.352303 0.091328 0.267288 0.204032 0.264261 0.007972 0.000124 0.054480 0.040809
3 0.321949 0.022447 0.193295 0.872913 20 10 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 3 0.152411 0.905848 0.123982 0.863215 0.303650 0.849675 0.010492 0.000761 0.078817 0.023936
4 0.319350 0.022057 0.106994 0.990436 20 100 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 14 0.128645 0.989468 0.044847 0.989379 0.147406 0.992462 0.002023 0.000374 0.044566 0.001433
5 0.322749 0.022561 0.107005 0.990437 20 1000 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 10 0.128657 0.989471 0.044808 0.989380 0.147465 0.992460 0.008952 0.001207 0.044603 0.001431
6 0.334296 0.022216 0.106988 0.990438 20 10000 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 18 0.128659 0.989468 0.044814 0.989382 0.147406 0.992462 0.026996 0.001220 0.044583 0.001432
7 0.405025 0.030052 0.106989 0.990438 20 100000 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 16 0.128657 0.989469 0.044821 0.989382 0.147406 0.992462 0.051148 0.004054 0.044579 0.001432
8 0.333364 0.021614 0.106997 0.990436 20 1e+06 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 12 0.128657 0.989471 0.044847 0.989379 0.147405 0.992460 0.012117 0.000130 0.044567 0.001431
9 0.339214 0.022011 0.106990 0.990437 20 1e+07 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 15 0.128659 0.989468 0.044821 0.989382 0.147406 0.992462 0.016049 0.000310 0.044580 0.001432
10 0.321303 0.021526 0.106996 0.990437 20 1e+08 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 13 0.128659 0.989468 0.044808 0.989380 0.147438 0.992462 0.010607 0.000244 0.044596 0.001433
11 0.320654 0.022453 0.106999 0.990436 20 1e+09 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 11 0.128659 0.989468 0.044847 0.989379 0.147406 0.992462 0.007802 0.001020 0.044568 0.001433
12 0.318098 0.022260 0.106988 0.990435 20 1e+10 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 17 0.128659 0.989468 0.044817 0.989378 0.147405 0.992460 0.009139 0.000844 0.044582 0.001432
13 0.322525 0.024039 -0.029977 -0.025399 30 0.01 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 44 -0.032428 -0.023136 -0.037590 -0.024576 -0.019905 -0.028485 0.013170 0.000934 0.007421 0.002260
14 0.327484 0.022565 0.018678 0.038496 30 0.1 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 25 0.000508 0.049117 -0.001221 0.036880 0.056816 0.029492 0.024560 0.000173 0.026951 0.008093
15 0.323009 0.023812 0.115011 0.237507 30 1 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 9 0.075685 0.294466 0.076663 0.207312 0.192836 0.210744 0.013997 0.000257 0.054979 0.040300
16 0.340983 0.025485 0.201219 0.772120 30 10 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 1 0.145304 0.837766 0.138166 0.730180 0.320402 0.748414 0.010919 0.000624 0.084244 0.047012
17 0.371504 0.025538 0.013455 0.990340 30 100 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 27 0.098744 0.989490 -0.047207 0.989228 -0.011501 0.992301 0.030696 0.000654 0.062156 0.001391
18 0.360124 0.025247 0.013436 0.990340 30 1000 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 31 0.098764 0.989489 -0.047237 0.989228 -0.011549 0.992302 0.006418 0.000245 0.062182 0.001392
19 0.417541 0.027973 0.013431 0.990340 30 10000 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 32 0.098761 0.989491 -0.047217 0.989227 -0.011581 0.992300 0.060589 0.002497 0.062178 0.001391
20 0.381538 0.026328 0.013440 0.990342 30 100000 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 29 0.098774 0.989494 -0.047214 0.989228 -0.011571 0.992302 0.010520 0.001201 0.062182 0.001391
21 0.415525 0.028724 0.013426 0.990342 30 1e+06 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 33 0.098756 0.989492 -0.047229 0.989233 -0.011581 0.992300 0.050314 0.002889 0.062179 0.001389
22 0.402848 0.026831 0.013439 0.990341 30 1e+07 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 30 0.098753 0.989495 -0.047242 0.989226 -0.011526 0.992303 0.023463 0.002502 0.062175 0.001392
23 0.377334 0.027003 0.013423 0.990341 30 1e+08 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 34 0.098734 0.989493 -0.047236 0.989230 -0.011560 0.992301 0.020550 0.002748 0.062169 0.001390
24 0.412278 0.028012 0.013445 0.990341 30 1e+09 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 28 0.098755 0.989491 -0.047220 0.989230 -0.011531 0.992302 0.006899 0.001645 0.062169 0.001391
25 0.350423 0.026298 0.013418 0.990341 30 1e+10 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 35 0.098755 0.989491 -0.047230 0.989231 -0.011602 0.992301 0.009187 0.001538 0.062182 0.001390
26 0.393824 0.025812 -0.029272 -0.025247 40 0.01 rbf {u'pca__n_components': 40, u'svr__kernel': u'r... 40 -0.031231 -0.023163 -0.037017 -0.024186 -0.019560 -0.028394 0.007482 0.000690 0.007256 0.002263
27 0.389406 0.025173 0.016289 0.031952 40 0.1 rbf {u'pca__n_components': 40, u'svr__kernel': u'r... 26 -0.001172 0.042439 -0.003099 0.030162 0.053206 0.023255 0.007453 0.000387 0.026091 0.007934
28 0.395878 0.027135 0.102083 0.196521 40 1 rbf {u'pca__n_components': 40, u'svr__kernel': u'r... 19 0.064748 0.247750 0.063694 0.168021 0.177953 0.173791 0.014663 0.001640 0.053598 0.036301
29 0.424444 0.027525 0.198381 0.664516 40 10 rbf {u'pca__n_components': 40, u'svr__kernel': u'r... 2 0.137054 0.753218 0.135425 0.600677 0.322903 0.639654 0.012611 0.000482 0.087967 0.064709
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
61 0.508680 0.037455 -0.190814 0.989844 60 1e+07 rbf {u'pca__n_components': 60, u'svr__kernel': u'r... 71 0.012051 0.988714 -0.193018 0.988729 -0.392263 0.992089 0.010386 0.001379 0.165121 0.001587
62 0.513284 0.039452 -0.190780 0.989843 60 1e+08 rbf {u'pca__n_components': 60, u'svr__kernel': u'r... 68 0.012057 0.988712 -0.193033 0.988729 -0.392152 0.992088 0.031457 0.000380 0.165078 0.001587
63 0.513813 0.037411 -0.190890 0.989844 60 1e+09 rbf {u'pca__n_components': 60, u'svr__kernel': u'r... 75 0.011995 0.988715 -0.193119 0.988728 -0.392332 0.992089 0.041080 0.000965 0.165126 0.001588
64 0.529311 0.039057 -0.190834 0.989842 60 1e+10 rbf {u'pca__n_components': 60, u'svr__kernel': u'r... 72 0.012039 0.988712 -0.192982 0.988728 -0.392346 0.992086 0.041090 0.002011 0.165149 0.001587
65 0.399101 0.037425 -0.029870 -0.026848 70 0.01 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 43 -0.031567 -0.025800 -0.037350 -0.025824 -0.020688 -0.028919 0.003334 0.001181 0.006903 0.001465
66 0.463459 0.034249 0.007286 0.017985 70 0.1 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 38 -0.005424 0.026559 -0.011135 0.016499 0.038465 0.010895 0.052533 0.001114 0.022149 0.006480
67 0.398980 0.033689 0.070748 0.128397 70 1 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 22 0.045835 0.170077 0.034401 0.111012 0.132104 0.104101 0.016540 0.000828 0.043594 0.029607
68 0.447780 0.040220 0.161298 0.439841 70 10 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 6 0.112965 0.542449 0.105275 0.374492 0.265841 0.402583 0.014509 0.003180 0.073918 0.073455
69 0.536350 0.046936 -0.101452 0.943558 70 100 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 57 0.031757 0.984303 -0.076097 0.912878 -0.260530 0.933492 0.014797 0.005422 0.120700 0.030015
70 0.561493 0.053595 -0.233272 0.989760 70 1000 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 80 -0.012347 0.988717 -0.209033 0.988564 -0.479293 0.992000 0.013825 0.008176 0.191458 0.001585
71 0.574503 0.043541 -0.233305 0.989759 70 10000 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 82 -0.012404 0.988712 -0.209061 0.988565 -0.479306 0.992001 0.010887 0.001749 0.191441 0.001586
72 0.600882 0.052374 -0.233340 0.989759 70 100000 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 83 -0.012405 0.988713 -0.209091 0.988566 -0.479380 0.991998 0.032875 0.013567 0.191470 0.001584
73 0.583812 0.042339 -0.233262 0.989760 70 1e+06 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 78 -0.012427 0.988715 -0.209021 0.988563 -0.479194 0.992000 0.002412 0.001995 0.191386 0.001586
74 0.693127 0.047648 -0.233276 0.989759 70 1e+07 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 81 -0.012387 0.988715 -0.209043 0.988563 -0.479255 0.992000 0.052228 0.002101 0.191426 0.001585
75 0.687408 0.043708 -0.233246 0.989760 70 1e+08 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 77 -0.012363 0.988716 -0.209046 0.988566 -0.479185 0.991998 0.057697 0.001977 0.191406 0.001584
76 0.593573 0.044166 -0.233240 0.989761 70 1e+09 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 76 -0.012371 0.988716 -0.209074 0.988564 -0.479132 0.992002 0.034252 0.001150 0.191378 0.001586
77 0.585067 0.049986 -0.233271 0.989759 70 1e+10 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 79 -0.012383 0.988715 -0.209093 0.988563 -0.479194 0.991999 0.015558 0.010700 0.191399 0.001585
78 0.490924 0.041961 -0.030227 -0.027433 80 0.01 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 45 -0.031882 -0.026821 -0.037681 -0.026424 -0.021113 -0.029054 0.037404 0.004109 0.006861 0.001158
79 0.452803 0.037656 0.005173 0.015149 80 0.1 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 39 -0.005809 0.023934 -0.013093 0.013139 0.034464 0.008374 0.011028 0.002210 0.020904 0.006509
80 0.465698 0.038230 0.063723 0.115678 80 1 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 23 0.041234 0.154065 0.026844 0.100478 0.123177 0.092490 0.020177 0.002723 0.042409 0.027339
81 0.496502 0.039512 0.149804 0.390933 80 10 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 7 0.106052 0.489331 0.093944 0.332209 0.249584 0.351259 0.012804 0.001133 0.070661 0.070011
82 0.602596 0.044552 -0.075774 0.914773 80 100 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 47 0.022005 0.979421 -0.037547 0.864486 -0.212160 0.900413 0.023453 0.001302 0.099368 0.048008
83 0.655959 0.049740 -0.264639 0.989699 80 1000 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 86 -0.032591 0.988635 -0.218602 0.988509 -0.543624 0.991954 0.010911 0.007762 0.211214 0.001595
84 0.654982 0.044233 -0.264641 0.989697 80 10000 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 87 -0.032555 0.988634 -0.218630 0.988507 -0.543639 0.991952 0.035343 0.000435 0.211232 0.001595
85 0.648038 0.046814 -0.264619 0.989699 80 100000 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 84 -0.032586 0.988634 -0.218645 0.988509 -0.543526 0.991953 0.022323 0.000769 0.211169 0.001595
86 0.668215 0.044960 -0.264708 0.989699 80 1e+06 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 90 -0.032619 0.988636 -0.218631 0.988509 -0.543773 0.991952 0.029095 0.001092 0.211267 0.001594
87 0.651821 0.046381 -0.264623 0.989698 80 1e+07 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 85 -0.032526 0.988634 -0.218602 0.988509 -0.543642 0.991951 0.027850 0.001784 0.211246 0.001594
88 0.680639 0.055185 -0.264653 0.989699 80 1e+08 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 89 -0.032591 0.988636 -0.218607 0.988509 -0.543661 0.991953 0.007565 0.010534 0.211230 0.001594
89 0.699670 0.048721 -0.264714 0.989698 80 1e+09 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 91 -0.032580 0.988636 -0.218622 0.988507 -0.543842 0.991953 0.054026 0.001109 0.211312 0.001595
90 0.683681 0.047485 -0.264644 0.989699 80 1e+10 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 88 -0.032582 0.988633 -0.218594 0.988509 -0.543656 0.991953 0.013902 0.001278 0.211232 0.001595

91 rows × 19 columns

---------- pH
Cross_val_score:  [ 0.66677802  0.70956204  0.69330498]
Explained variance score:  0.832716738855
Mean absolute error:  0.280477428867
Mean squared error:  0.147325879393
R2 score:  0.832710214588
mean_fit_time mean_score_time mean_test_score mean_train_score param_pca__n_components param_svr__C param_svr__kernel params rank_test_score split0_test_score split0_train_score split1_test_score split1_train_score split2_test_score split2_train_score std_fit_time std_score_time std_test_score std_train_score
0 0.325536 0.023699 0.034312 0.051760 20 0.01 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 91 0.047078 0.045019 0.002992 0.055638 0.052818 0.054624 0.011977 0.000658 0.022249 0.004785
1 0.297957 0.023034 0.376048 0.465049 20 0.1 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 84 0.410919 0.447522 0.344460 0.481245 0.372629 0.466378 0.007063 0.000147 0.027247 0.013800
2 0.315254 0.024703 0.674016 0.899997 20 1 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 77 0.696944 0.900661 0.654393 0.896538 0.670622 0.902792 0.003774 0.001980 0.017542 0.002596
3 0.331280 0.024027 0.679452 0.987554 20 10 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 67 0.699907 0.989307 0.664586 0.987346 0.673784 0.986008 0.007953 0.001895 0.014970 0.001355
4 0.329431 0.023347 0.675438 0.989293 20 100 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 73 0.697889 0.989960 0.658378 0.989248 0.669959 0.988670 0.003280 0.000487 0.016593 0.000528
5 0.330428 0.023254 0.675444 0.989293 20 1000 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 68 0.697889 0.989960 0.658398 0.989247 0.669959 0.988670 0.009945 0.001143 0.016586 0.000528
6 0.328780 0.023203 0.675428 0.989292 20 10000 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 76 0.697858 0.989961 0.658389 0.989250 0.669951 0.988667 0.008254 0.000764 0.016576 0.000529
7 0.326396 0.022721 0.675444 0.989291 20 100000 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 69 0.697889 0.989960 0.658405 0.989247 0.669951 0.988667 0.003455 0.000059 0.016585 0.000529
8 0.347085 0.025404 0.675443 0.989292 20 1e+06 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 70 0.697889 0.989960 0.658400 0.989248 0.669951 0.988667 0.012221 0.001943 0.016587 0.000529
9 0.336179 0.023550 0.675442 0.989292 20 1e+07 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 71 0.697889 0.989960 0.658398 0.989248 0.669951 0.988667 0.010502 0.000863 0.016587 0.000529
10 0.332996 0.022592 0.675436 0.989291 20 1e+08 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 74 0.697866 0.989960 0.658405 0.989247 0.669951 0.988667 0.008731 0.000075 0.016574 0.000529
11 0.331645 0.022652 0.675434 0.989291 20 1e+09 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 75 0.697858 0.989961 0.658405 0.989247 0.669951 0.988667 0.007642 0.000140 0.016571 0.000529
12 0.339117 0.022742 0.675438 0.989292 20 1e+10 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 72 0.697889 0.989960 0.658386 0.989248 0.669951 0.988667 0.005697 0.000199 0.016591 0.000529
13 0.320177 0.027259 0.056859 0.072195 30 0.01 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 90 0.069535 0.062375 0.025275 0.076786 0.075719 0.077423 0.006647 0.000346 0.022454 0.006949
14 0.310094 0.027046 0.458634 0.527993 30 0.1 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 83 0.501273 0.520060 0.427115 0.538896 0.447349 0.525024 0.004979 0.000768 0.031316 0.007971
15 0.331366 0.027061 0.708373 0.882041 30 1 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 66 0.724132 0.883203 0.692703 0.877751 0.708224 0.885170 0.006199 0.001232 0.012835 0.003139
16 0.349154 0.025942 0.718428 0.983454 30 10 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 55 0.735494 0.985734 0.713308 0.982463 0.706417 0.982166 0.003747 0.000122 0.012413 0.001616
17 0.364490 0.026050 0.708959 0.989430 30 100 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 61 0.725077 0.990044 0.700408 0.989387 0.701330 0.988859 0.015407 0.000073 0.011425 0.000485
18 0.357876 0.026356 0.708948 0.989429 30 1000 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 65 0.725055 0.990045 0.700395 0.989381 0.701332 0.988862 0.009668 0.000246 0.011418 0.000484
19 0.369852 0.027280 0.708952 0.989430 30 10000 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 63 0.725090 0.990044 0.700371 0.989386 0.701334 0.988858 0.009112 0.001635 0.011440 0.000485
20 0.363062 0.026721 0.708962 0.989429 30 100000 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 59 0.725071 0.990044 0.700405 0.989387 0.701348 0.988856 0.012006 0.000965 0.011419 0.000486
21 0.361150 0.026767 0.708949 0.989430 30 1e+06 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 64 0.725069 0.990043 0.700389 0.989385 0.701327 0.988862 0.009734 0.000889 0.011427 0.000483
22 0.362218 0.026533 0.708968 0.989430 30 1e+07 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 57 0.725106 0.990045 0.700389 0.989385 0.701346 0.988860 0.009049 0.000417 0.011440 0.000485
23 0.357418 0.026151 0.708954 0.989430 30 1e+08 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 62 0.725059 0.990045 0.700390 0.989388 0.701352 0.988859 0.004240 0.000144 0.011416 0.000485
24 0.357830 0.026659 0.708965 0.989429 30 1e+09 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 58 0.725086 0.990046 0.700414 0.989383 0.701331 0.988859 0.005238 0.000900 0.011428 0.000486
25 0.376967 0.026322 0.708960 0.989429 30 1e+10 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 60 0.725075 0.990045 0.700420 0.989385 0.701323 0.988858 0.018786 0.000309 0.011423 0.000485
26 0.398203 0.032272 0.069827 0.083487 40 0.01 rbf {u'pca__n_components': 40, u'svr__kernel': u'r... 89 0.083343 0.073051 0.037961 0.088751 0.088126 0.088660 0.005691 0.000591 0.022596 0.007380
27 0.401955 0.030492 0.500445 0.556407 40 0.1 rbf {u'pca__n_components': 40, u'svr__kernel': u'r... 82 0.543169 0.549250 0.472395 0.565808 0.485607 0.554163 0.011324 0.000200 0.030745 0.006943
28 0.405975 0.030148 0.716440 0.863251 40 1 rbf {u'pca__n_components': 40, u'svr__kernel': u'r... 56 0.730807 0.865124 0.700409 0.859206 0.718049 0.865423 0.007055 0.000708 0.012466 0.002863
29 0.442860 0.030587 0.738134 0.977683 40 10 rbf {u'pca__n_components': 40, u'svr__kernel': u'r... 6 0.749711 0.979462 0.742183 0.975889 0.722462 0.977699 0.007683 0.000978 0.011490 0.001459
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
61 0.484239 0.036972 0.727004 0.989665 60 1e+07 rbf {u'pca__n_components': 60, u'svr__kernel': u'r... 25 0.739166 0.990114 0.730197 0.989740 0.711602 0.989141 0.014673 0.000659 0.011480 0.000400
62 0.482657 0.037688 0.727002 0.989665 60 1e+08 rbf {u'pca__n_components': 60, u'svr__kernel': u'r... 26 0.739169 0.990114 0.730183 0.989740 0.711606 0.989142 0.014899 0.001280 0.011478 0.000400
63 0.480583 0.036072 0.726979 0.989664 60 1e+09 rbf {u'pca__n_components': 60, u'svr__kernel': u'r... 32 0.739179 0.990114 0.730131 0.989736 0.711579 0.989143 0.004900 0.000353 0.011489 0.000400
64 0.485483 0.041061 0.726990 0.989665 60 1e+10 rbf {u'pca__n_components': 60, u'svr__kernel': u'r... 27 0.739186 0.990113 0.730156 0.989740 0.711579 0.989142 0.006909 0.004774 0.011494 0.000400
65 0.406178 0.043330 0.082940 0.093122 70 0.01 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 85 0.097461 0.083518 0.052663 0.099902 0.098640 0.095948 0.008978 0.000521 0.021394 0.006981
66 0.388879 0.043011 0.533567 0.572473 70 0.1 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 79 0.577929 0.574691 0.505892 0.573878 0.516708 0.568851 0.020736 0.000590 0.031737 0.002583
67 0.401299 0.041219 0.722975 0.827280 70 1 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 43 0.730987 0.830676 0.715166 0.823851 0.722740 0.827313 0.012160 0.000269 0.006463 0.002787
68 0.443129 0.042971 0.761873 0.951962 70 10 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 2 0.766650 0.954344 0.781170 0.948489 0.737781 0.953052 0.016038 0.003949 0.018023 0.002512
69 0.662470 0.044232 0.735028 0.988977 70 100 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 7 0.740689 0.990238 0.739831 0.988718 0.724541 0.987976 0.110207 0.004066 0.007416 0.000941
70 0.549777 0.041296 0.728856 0.989688 70 1000 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 17 0.740367 0.990246 0.729763 0.989594 0.716393 0.989224 0.010405 0.000922 0.009811 0.000422
71 0.586559 0.040446 0.728836 0.989687 70 10000 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 23 0.740333 0.990244 0.729755 0.989593 0.716375 0.989223 0.098239 0.000362 0.009805 0.000422
72 0.531215 0.040628 0.728828 0.989688 70 100000 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 24 0.740355 0.990245 0.729711 0.989594 0.716375 0.989226 0.012202 0.000935 0.009813 0.000421
73 0.523158 0.041528 0.728838 0.989686 70 1e+06 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 21 0.740354 0.990245 0.729745 0.989592 0.716370 0.989223 0.006133 0.002136 0.009816 0.000423
74 0.523583 0.040495 0.728838 0.989688 70 1e+07 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 20 0.740368 0.990245 0.729744 0.989595 0.716359 0.989224 0.004200 0.000424 0.009826 0.000422
75 0.524846 0.039799 0.728847 0.989688 70 1e+08 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 19 0.740349 0.990247 0.729774 0.989595 0.716374 0.989223 0.008108 0.000164 0.009813 0.000423
76 0.523817 0.040203 0.728850 0.989688 70 1e+09 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 18 0.740368 0.990247 0.729762 0.989595 0.716375 0.989223 0.002055 0.000233 0.009820 0.000423
77 0.520545 0.039883 0.728836 0.989688 70 1e+10 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 22 0.740338 0.990244 0.729743 0.989596 0.716382 0.989223 0.015241 0.000220 0.009804 0.000422
78 0.468656 0.047169 0.082905 0.092380 80 0.01 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 86 0.097253 0.082772 0.053091 0.099330 0.098315 0.095037 0.010465 0.000752 0.021065 0.007016
79 0.455236 0.047223 0.534448 0.569791 80 0.1 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 78 0.577160 0.572625 0.507658 0.570669 0.518361 0.566079 0.007166 0.001854 0.030574 0.002743
80 0.477836 0.046769 0.723462 0.819292 80 1 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 34 0.730115 0.822438 0.717304 0.815935 0.722942 0.819505 0.027159 0.002792 0.005245 0.002659
81 0.512797 0.045299 0.765505 0.943641 80 10 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 1 0.766871 0.946373 0.787053 0.939682 0.742586 0.944869 0.019969 0.000884 0.018168 0.002866
82 0.612319 0.043062 0.741515 0.988309 80 100 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 5 0.748275 0.989678 0.743984 0.988297 0.732261 0.986953 0.021502 0.000168 0.006768 0.001113
83 0.622979 0.046266 0.731351 0.989712 80 1000 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 11 0.740623 0.990272 0.729589 0.989603 0.723806 0.989261 0.018811 0.002076 0.006980 0.000420
84 0.622763 0.045267 0.731341 0.989712 80 10000 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 14 0.740632 0.990270 0.729555 0.989603 0.723801 0.989264 0.000432 0.001862 0.006988 0.000418
85 0.617589 0.044222 0.731338 0.989713 80 100000 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 15 0.740603 0.990272 0.729561 0.989602 0.723815 0.989265 0.015590 0.001114 0.006970 0.000418
86 0.613862 0.043296 0.731350 0.989712 80 1e+06 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 13 0.740628 0.990272 0.729555 0.989602 0.723831 0.989261 0.011838 0.000157 0.006976 0.000420
87 0.617235 0.043524 0.731350 0.989711 80 1e+07 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 12 0.740638 0.990269 0.729561 0.989601 0.723816 0.989262 0.001588 0.000197 0.006985 0.000418
88 0.630804 0.048653 0.731357 0.989712 80 1e+08 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 8 0.740644 0.990272 0.729592 0.989601 0.723801 0.989262 0.016246 0.005265 0.006991 0.000420
89 0.651543 0.044566 0.731352 0.989712 80 1e+09 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 10 0.740644 0.990272 0.729565 0.989604 0.723811 0.989262 0.028955 0.001285 0.006989 0.000419
90 0.629881 0.044737 0.731354 0.989712 80 1e+10 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 9 0.740625 0.990270 0.729563 0.989602 0.723839 0.989264 0.018508 0.001414 0.006971 0.000418

91 rows × 19 columns

---------- SOC
Cross_val_score:  [ 0.88502386  0.746843    0.85529741]
Explained variance score:  0.918039826962
Mean absolute error:  0.197678868055
Mean squared error:  0.12487316467
R2 score:  0.917169573909
mean_fit_time mean_score_time mean_test_score mean_train_score param_pca__n_components param_svr__C param_svr__kernel params rank_test_score split0_test_score split0_train_score split1_test_score split1_train_score split2_test_score split2_train_score std_fit_time std_score_time std_test_score std_train_score
0 0.319361 0.023102 -0.029721 -0.021360 20 0.01 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 91 -0.026112 -0.029868 -0.054350 -0.015237 -0.008716 -0.018973 0.020424 0.000441 0.018793 0.006207
1 0.299014 0.022062 0.303963 0.352870 20 0.1 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 84 0.348919 0.321973 0.253888 0.376422 0.308908 0.360216 0.006960 0.001134 0.038965 0.022828
2 0.317139 0.021984 0.667930 0.838123 20 1 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 77 0.779123 0.794396 0.628084 0.843248 0.596150 0.876726 0.011831 0.001250 0.079848 0.033806
3 0.315232 0.021623 0.719424 0.993472 20 10 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 66 0.830118 0.993747 0.701989 0.993098 0.625737 0.993570 0.008701 0.000442 0.084369 0.000274
4 0.313111 0.021343 0.719225 0.993511 20 100 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 69 0.830118 0.993747 0.701388 0.993216 0.625739 0.993570 0.004680 0.000053 0.084410 0.000221
5 0.310461 0.021486 0.719224 0.993511 20 1000 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 70 0.830118 0.993747 0.701388 0.993216 0.625737 0.993570 0.006831 0.000096 0.084411 0.000221
6 0.317728 0.021482 0.719221 0.993511 20 10000 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 74 0.830118 0.993747 0.701380 0.993217 0.625737 0.993570 0.007606 0.000452 0.084411 0.000220
7 0.329430 0.021808 0.719224 0.993511 20 100000 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 71 0.830118 0.993747 0.701388 0.993216 0.625737 0.993570 0.016663 0.000685 0.084411 0.000221
8 0.317954 0.022794 0.719224 0.993511 20 1e+06 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 73 0.830118 0.993747 0.701388 0.993216 0.625737 0.993570 0.008569 0.000980 0.084411 0.000221
9 0.312866 0.022011 0.719227 0.993511 20 1e+07 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 67 0.830118 0.993747 0.701388 0.993216 0.625745 0.993570 0.007873 0.001110 0.084407 0.000221
10 0.316109 0.021360 0.719224 0.993511 20 1e+08 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 72 0.830118 0.993747 0.701388 0.993216 0.625737 0.993570 0.000653 0.000192 0.084411 0.000221
11 0.312168 0.021506 0.719221 0.993511 20 1e+09 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 75 0.830118 0.993747 0.701380 0.993217 0.625737 0.993570 0.009432 0.000596 0.084411 0.000220
12 0.317920 0.021309 0.719225 0.993511 20 1e+10 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 68 0.830118 0.993747 0.701388 0.993216 0.625739 0.993570 0.005347 0.000040 0.084410 0.000221
13 0.327793 0.026622 0.022485 0.029083 30 0.01 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 90 0.034283 0.021534 -0.003422 0.039353 0.036549 0.026363 0.018950 0.000358 0.018325 0.007524
14 0.314243 0.024515 0.389190 0.424722 30 0.1 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 83 0.444152 0.385887 0.343162 0.450474 0.380044 0.437805 0.008344 0.000182 0.041745 0.027943
15 0.319602 0.023877 0.715710 0.845206 30 1 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 76 0.828825 0.805009 0.684977 0.848281 0.632889 0.882327 0.006147 0.000515 0.082909 0.031640
16 0.332049 0.024207 0.766789 0.992618 30 10 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 51 0.871854 0.993840 0.764380 0.990631 0.663727 0.993384 0.010835 0.000112 0.085012 0.001418
17 0.331257 0.024449 0.764844 0.993745 30 100 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 53 0.871868 0.994019 0.757666 0.993426 0.664583 0.993789 0.007253 0.000312 0.084803 0.000244
18 0.395287 0.027671 0.764842 0.993745 30 1000 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 59 0.871868 0.994019 0.757660 0.993426 0.664583 0.993791 0.034850 0.002185 0.084803 0.000244
19 0.358599 0.026565 0.764842 0.993745 30 10000 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 55 0.871868 0.994019 0.757660 0.993426 0.664583 0.993789 0.025640 0.002581 0.084803 0.000244
20 0.384401 0.027194 0.764844 0.993745 30 100000 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 54 0.871873 0.994019 0.757660 0.993426 0.664583 0.993789 0.067419 0.002354 0.084805 0.000244
21 0.392593 0.046444 0.764838 0.993745 30 1e+06 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 61 0.871868 0.994019 0.757649 0.993426 0.664583 0.993791 0.045445 0.031727 0.084803 0.000244
22 0.372165 0.024865 0.764842 0.993745 30 1e+07 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 57 0.871868 0.994019 0.757660 0.993426 0.664583 0.993789 0.025361 0.000434 0.084803 0.000244
23 0.394865 0.024918 0.764842 0.993745 30 1e+08 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 60 0.871868 0.994019 0.757660 0.993426 0.664583 0.993791 0.082233 0.000688 0.084803 0.000244
24 0.382893 0.028189 0.764842 0.993745 30 1e+09 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 56 0.871868 0.994019 0.757660 0.993426 0.664583 0.993789 0.069966 0.004454 0.084803 0.000244
25 0.422780 0.027881 0.764842 0.993745 30 1e+10 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 58 0.871868 0.994019 0.757660 0.993426 0.664583 0.993789 0.103532 0.004767 0.084803 0.000244
26 0.423294 0.030433 0.056051 0.061180 40 0.01 rbf {u'pca__n_components': 40, u'svr__kernel': u'r... 89 0.073512 0.054486 0.024567 0.068808 0.070006 0.060246 0.014250 0.001028 0.022287 0.005884
27 0.414515 0.027404 0.432982 0.460860 40 0.1 rbf {u'pca__n_components': 40, u'svr__kernel': u'r... 82 0.492789 0.420087 0.391168 0.486517 0.414757 0.475976 0.022337 0.000116 0.043451 0.029150
28 0.416736 0.026426 0.739868 0.844910 40 1 rbf {u'pca__n_components': 40, u'svr__kernel': u'r... 65 0.850813 0.806858 0.710751 0.846913 0.657609 0.880959 0.013271 0.000467 0.081538 0.030285
29 0.430651 0.026402 0.796881 0.989847 40 10 rbf {u'pca__n_components': 40, u'svr__kernel': u'r... 41 0.903805 0.989258 0.796358 0.987893 0.690068 0.992390 0.013976 0.000090 0.087287 0.001883
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
61 0.445266 0.034373 0.815253 0.994144 60 1e+07 rbf {u'pca__n_components': 60, u'svr__kernel': u'r... 24 0.907102 0.994351 0.814967 0.993763 0.723333 0.994318 0.019753 0.001208 0.075048 0.000270
62 0.413190 0.034804 0.815261 0.994145 60 1e+08 rbf {u'pca__n_components': 60, u'svr__kernel': u'r... 23 0.907098 0.994351 0.814986 0.993765 0.723342 0.994319 0.010535 0.003070 0.075042 0.000269
63 0.409186 0.032133 0.815245 0.994145 60 1e+09 rbf {u'pca__n_components': 60, u'svr__kernel': u'r... 26 0.907095 0.994351 0.814964 0.993764 0.723319 0.994319 0.006206 0.000211 0.075050 0.000269
64 0.436541 0.034709 0.815242 0.994145 60 1e+10 rbf {u'pca__n_components': 60, u'svr__kernel': u'r... 31 0.907095 0.994351 0.814954 0.993766 0.723320 0.994318 0.016125 0.000542 0.075050 0.000268
65 0.417571 0.042042 0.101794 0.104861 70 0.01 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 86 0.125934 0.098855 0.071581 0.114480 0.107774 0.101248 0.009710 0.001229 0.022595 0.006872
66 0.387120 0.038799 0.475037 0.491518 70 0.1 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 79 0.535590 0.452053 0.439686 0.512430 0.449599 0.510070 0.005343 0.000705 0.043091 0.027923
67 0.407099 0.042082 0.762842 0.830983 70 1 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 62 0.863533 0.796561 0.734987 0.832528 0.689615 0.863860 0.008016 0.005216 0.073700 0.027496
68 0.420138 0.034639 0.841903 0.976212 70 10 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 2 0.930859 0.970874 0.839115 0.979600 0.755390 0.978163 0.025424 0.000663 0.071685 0.003820
69 0.452732 0.039206 0.823417 0.994188 70 100 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 13 0.910152 0.994383 0.824644 0.993830 0.735120 0.994352 0.010805 0.005149 0.071484 0.000254
70 0.462702 0.034957 0.823220 0.994193 70 1000 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 18 0.910158 0.994383 0.824040 0.993843 0.735123 0.994354 0.025168 0.000406 0.071483 0.000248
71 0.468438 0.035142 0.823221 0.994193 70 10000 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 17 0.910151 0.994384 0.824062 0.993844 0.735113 0.994352 0.032731 0.000107 0.071484 0.000248
72 0.436551 0.036658 0.823219 0.994192 70 100000 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 20 0.910166 0.994384 0.824051 0.993842 0.735102 0.994351 0.002176 0.002154 0.071495 0.000248
73 0.452038 0.035281 0.823225 0.994193 70 1e+06 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 16 0.910149 0.994384 0.824074 0.993843 0.735114 0.994352 0.015298 0.000267 0.071483 0.000248
74 0.452370 0.035877 0.823219 0.994193 70 1e+07 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 19 0.910153 0.994383 0.824056 0.993845 0.735113 0.994352 0.040647 0.000828 0.071485 0.000247
75 0.435740 0.035897 0.823214 0.994193 70 1e+08 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 21 0.910152 0.994383 0.824054 0.993844 0.735099 0.994352 0.012965 0.001319 0.071490 0.000247
76 0.465869 0.036978 0.823225 0.994194 70 1e+09 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 15 0.910153 0.994385 0.824068 0.993844 0.735117 0.994352 0.016560 0.001097 0.071483 0.000248
77 0.437446 0.034849 0.823230 0.994193 70 1e+10 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 14 0.910184 0.994383 0.824060 0.993844 0.735110 0.994352 0.012975 0.000346 0.071499 0.000247
78 0.485154 0.044271 0.109606 0.112016 80 0.01 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 85 0.135886 0.107903 0.078072 0.119661 0.114759 0.108483 0.019324 0.000233 0.023889 0.005411
79 0.514969 0.043568 0.479068 0.493430 80 0.1 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 78 0.538532 0.454743 0.446061 0.514353 0.452380 0.511192 0.027692 0.001819 0.042208 0.027386
80 0.482135 0.038229 0.764864 0.825503 80 1 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 52 0.862673 0.791446 0.737551 0.827729 0.693990 0.857334 0.022999 0.001128 0.071538 0.026945
81 0.497603 0.039715 0.849061 0.972049 80 10 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 1 0.933099 0.966348 0.845913 0.976458 0.767844 0.973340 0.020723 0.003779 0.067523 0.004227
82 0.537780 0.043573 0.831659 0.993952 80 100 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 4 0.911818 0.994351 0.838216 0.993166 0.744632 0.994339 0.031930 0.009128 0.068432 0.000556
83 0.508262 0.038018 0.829566 0.994165 80 1000 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 7 0.911828 0.994350 0.831914 0.993808 0.744637 0.994337 0.006489 0.001038 0.068297 0.000253
84 0.522231 0.037820 0.829572 0.994165 80 10000 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 6 0.911833 0.994350 0.831913 0.993808 0.744650 0.994337 0.032772 0.001257 0.068294 0.000253
85 0.516826 0.038200 0.829559 0.994166 80 100000 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 11 0.911831 0.994351 0.831901 0.993809 0.744626 0.994338 0.008254 0.001348 0.068303 0.000253
86 0.515419 0.038318 0.829559 0.994166 80 1e+06 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 12 0.911826 0.994350 0.831894 0.993809 0.744637 0.994338 0.009075 0.001011 0.068297 0.000252
87 0.509704 0.037788 0.829561 0.994165 80 1e+07 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 10 0.911832 0.994350 0.831904 0.993806 0.744629 0.994337 0.015228 0.001030 0.068302 0.000254
88 0.508652 0.038708 0.829573 0.994165 80 1e+08 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 5 0.911826 0.994350 0.831908 0.993807 0.744665 0.994339 0.015319 0.000973 0.068285 0.000253
89 0.518681 0.038601 0.829565 0.994167 80 1e+09 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 8 0.911834 0.994351 0.831890 0.993811 0.744653 0.994338 0.019671 0.001450 0.068293 0.000252
90 0.507867 0.037459 0.829563 0.994166 80 1e+10 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 9 0.911839 0.994351 0.831896 0.993808 0.744635 0.994339 0.016063 0.000303 0.068302 0.000253

91 rows × 19 columns

---------- Sand
Cross_val_score:  [ 0.82546639  0.82082172  0.82757977]
Explained variance score:  0.90157072917
Mean absolute error:  0.227022964183
Mean squared error:  0.0970269484613
R2 score:  0.901568721611
mean_fit_time mean_score_time mean_test_score mean_train_score param_pca__n_components param_svr__C param_svr__kernel params rank_test_score split0_test_score split0_train_score split1_test_score split1_train_score split2_test_score split2_train_score std_fit_time std_score_time std_test_score std_train_score
0 0.318563 0.025724 0.118858 0.137097 20 0.01 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 91 0.090111 0.143334 0.136383 0.134365 0.130193 0.133590 0.017083 0.001810 0.020523 0.004422
1 0.301952 0.023087 0.581639 0.663060 20 0.1 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 84 0.527238 0.693515 0.618684 0.651743 0.599206 0.643922 0.007204 0.000154 0.039353 0.021770
2 0.312524 0.023586 0.757978 0.938373 20 1 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 34 0.716448 0.937547 0.778397 0.941578 0.779249 0.935993 0.009721 0.000329 0.029425 0.002354
3 0.330553 0.022505 0.745190 0.989688 20 10 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 52 0.740263 0.991538 0.726104 0.991273 0.769223 0.986254 0.015741 0.000286 0.017935 0.002431
4 0.325961 0.022410 0.744689 0.991219 20 100 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 64 0.740286 0.991543 0.726157 0.991277 0.767639 0.990837 0.011293 0.000593 0.017209 0.000291
5 0.327313 0.023292 0.744689 0.991218 20 1000 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 63 0.740279 0.991541 0.726160 0.991275 0.767644 0.990837 0.007807 0.001194 0.017211 0.000290
6 0.332757 0.021986 0.744683 0.991218 20 10000 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 68 0.740265 0.991541 0.726153 0.991278 0.767648 0.990835 0.004339 0.000023 0.017216 0.000291
7 0.329486 0.022626 0.744688 0.991217 20 100000 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 65 0.740279 0.991541 0.726160 0.991275 0.767641 0.990834 0.015582 0.000413 0.017209 0.000292
8 0.324419 0.022141 0.744682 0.991218 20 1e+06 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 69 0.740265 0.991541 0.726160 0.991275 0.767639 0.990837 0.009285 0.000097 0.017210 0.000290
9 0.325052 0.022078 0.744685 0.991217 20 1e+07 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 67 0.740263 0.991538 0.726168 0.991276 0.767640 0.990837 0.012495 0.000115 0.017207 0.000289
10 0.320138 0.022113 0.744689 0.991218 20 1e+08 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 61 0.740286 0.991541 0.726160 0.991275 0.767640 0.990837 0.000962 0.000197 0.017208 0.000290
11 0.325326 0.022241 0.744688 0.991217 20 1e+09 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 66 0.740263 0.991538 0.726168 0.991276 0.767648 0.990835 0.006366 0.000238 0.017211 0.000290
12 0.328419 0.022105 0.744689 0.991218 20 1e+10 rbf {u'pca__n_components': 20, u'svr__kernel': u'r... 62 0.740263 0.991538 0.726172 0.991277 0.767649 0.990837 0.013505 0.000080 0.017210 0.000289
13 0.324977 0.027842 0.187116 0.205464 30 0.01 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 90 0.151833 0.212370 0.208143 0.200345 0.201508 0.203676 0.012056 0.000650 0.025143 0.005069
14 0.313031 0.026631 0.635731 0.698361 30 0.1 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 83 0.575396 0.726695 0.680403 0.685465 0.651627 0.682924 0.004866 0.000155 0.044329 0.020062
15 0.329455 0.026857 0.782492 0.920930 30 1 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 11 0.742854 0.916409 0.805405 0.925240 0.799370 0.921141 0.004328 0.001702 0.028190 0.003608
16 0.362648 0.025331 0.766190 0.988574 30 10 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 13 0.769148 0.990867 0.732031 0.991039 0.797378 0.983817 0.016546 0.000204 0.026743 0.003365
17 0.364651 0.025453 0.758976 0.991398 30 100 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 24 0.762594 0.991649 0.733021 0.991565 0.781300 0.990980 0.017260 0.000115 0.019863 0.000297
18 0.350731 0.025775 0.758958 0.991398 30 1000 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 31 0.762592 0.991648 0.732991 0.991567 0.781278 0.990979 0.005312 0.000396 0.019868 0.000298
19 0.359580 0.025449 0.758952 0.991398 30 10000 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 32 0.762586 0.991648 0.732984 0.991566 0.781271 0.990979 0.012276 0.000223 0.019868 0.000298
20 0.352435 0.025617 0.758976 0.991399 30 100000 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 25 0.762615 0.991649 0.733003 0.991567 0.781295 0.990980 0.013550 0.000389 0.019870 0.000298
21 0.356453 0.025789 0.758964 0.991397 30 1e+06 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 28 0.762592 0.991648 0.732991 0.991565 0.781295 0.990980 0.007914 0.000662 0.019874 0.000297
22 0.355836 0.025325 0.758960 0.991397 30 1e+07 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 30 0.762592 0.991648 0.732991 0.991565 0.781283 0.990980 0.005285 0.000100 0.019870 0.000297
23 0.352883 0.025362 0.758966 0.991398 30 1e+08 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 27 0.762586 0.991648 0.733016 0.991566 0.781284 0.990979 0.008676 0.000194 0.019859 0.000298
24 0.347018 0.025534 0.758964 0.991397 30 1e+09 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 29 0.762592 0.991648 0.733003 0.991567 0.781282 0.990977 0.006812 0.000367 0.019864 0.000299
25 0.357681 0.026838 0.758967 0.991398 30 1e+10 rbf {u'pca__n_components': 30, u'svr__kernel': u'r... 26 0.762594 0.991649 0.732991 0.991566 0.781300 0.990980 0.015987 0.001104 0.019876 0.000298
26 0.396140 0.031295 0.243559 0.259445 40 0.01 rbf {u'pca__n_components': 40, u'svr__kernel': u'r... 89 0.209011 0.271276 0.265250 0.249207 0.256551 0.257853 0.010521 0.000436 0.024733 0.009079
27 0.400184 0.029970 0.652430 0.705137 40 0.1 rbf {u'pca__n_components': 40, u'svr__kernel': u'r... 82 0.593844 0.731674 0.696771 0.688973 0.666900 0.694765 0.011205 0.000409 0.043258 0.018913
28 0.402341 0.028353 0.790778 0.904785 40 1 rbf {u'pca__n_components': 40, u'svr__kernel': u'r... 7 0.753791 0.899235 0.812992 0.909582 0.805694 0.905537 0.011483 0.000120 0.026373 0.004257
29 0.440193 0.028393 0.790004 0.984065 40 10 rbf {u'pca__n_components': 40, u'svr__kernel': u'r... 8 0.807582 0.983953 0.747323 0.988624 0.815039 0.979618 0.014743 0.000276 0.030304 0.003678
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
61 0.473304 0.036391 0.750218 0.991407 60 1e+07 rbf {u'pca__n_components': 60, u'svr__kernel': u'r... 46 0.762331 0.991684 0.728834 0.991404 0.759443 0.991133 0.013409 0.000729 0.015152 0.000225
62 0.488738 0.037964 0.750215 0.991406 60 1e+08 rbf {u'pca__n_components': 60, u'svr__kernel': u'r... 49 0.762322 0.991682 0.728830 0.991404 0.759447 0.991130 0.035002 0.002677 0.015153 0.000225
63 0.525531 0.038178 0.750211 0.991407 60 1e+09 rbf {u'pca__n_components': 60, u'svr__kernel': u'r... 51 0.762295 0.991684 0.728816 0.991404 0.759476 0.991133 0.053100 0.002872 0.015158 0.000225
64 0.536934 0.035995 0.750212 0.991406 60 1e+10 rbf {u'pca__n_components': 60, u'svr__kernel': u'r... 50 0.762315 0.991682 0.728822 0.991403 0.759452 0.991131 0.048491 0.000366 0.015155 0.000225
65 0.437614 0.045999 0.334549 0.348440 70 0.01 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 86 0.296151 0.360576 0.361817 0.335517 0.345828 0.349228 0.049847 0.002120 0.027975 0.010245
66 0.423468 0.043432 0.660998 0.697282 70 0.1 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 78 0.600542 0.719456 0.711716 0.680382 0.670971 0.692009 0.029876 0.000879 0.045944 0.016382
67 0.401922 0.038847 0.788841 0.864587 70 1 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 9 0.751726 0.865107 0.816075 0.866602 0.798867 0.862050 0.003726 0.000230 0.027217 0.001894
68 0.429829 0.038470 0.824732 0.964468 70 10 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 2 0.841169 0.959503 0.797839 0.972183 0.835124 0.961718 0.015831 0.000268 0.019157 0.005530
69 0.511426 0.039115 0.760662 0.989549 70 100 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 14 0.761556 0.991596 0.725972 0.991426 0.794453 0.985623 0.019034 0.000145 0.027947 0.002776
70 0.513852 0.040760 0.744711 0.991390 70 1000 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 56 0.758343 0.991640 0.726122 0.991427 0.749616 0.991103 0.004249 0.000321 0.013607 0.000221
71 0.511978 0.039761 0.744696 0.991390 70 10000 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 59 0.758344 0.991638 0.726105 0.991427 0.749588 0.991104 0.004416 0.000441 0.013611 0.000220
72 0.532539 0.041482 0.744719 0.991390 70 100000 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 54 0.758366 0.991639 0.726091 0.991427 0.749648 0.991104 0.031702 0.001904 0.013633 0.000220
73 0.517734 0.039825 0.744711 0.991391 70 1e+06 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 55 0.758360 0.991640 0.726111 0.991429 0.749610 0.991104 0.005850 0.000636 0.013617 0.000220
74 0.511984 0.041205 0.744723 0.991388 70 1e+07 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 53 0.758375 0.991637 0.726112 0.991425 0.749631 0.991103 0.011921 0.001922 0.013624 0.000219
75 0.541039 0.042497 0.744697 0.991390 70 1e+08 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 58 0.758332 0.991641 0.726105 0.991426 0.749601 0.991102 0.047089 0.003834 0.013609 0.000221
76 0.561987 0.040932 0.744704 0.991390 70 1e+09 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 57 0.758333 0.991640 0.726115 0.991427 0.749612 0.991104 0.017181 0.001222 0.013606 0.000220
77 0.540473 0.042352 0.744694 0.991391 70 1e+10 rbf {u'pca__n_components': 70, u'svr__kernel': u'r... 60 0.758314 0.991641 0.726095 0.991429 0.749620 0.991103 0.005172 0.002187 0.013610 0.000221
78 0.571590 0.048486 0.350695 0.363814 80 0.01 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 85 0.312105 0.376121 0.379440 0.350234 0.360690 0.365088 0.152670 0.000132 0.028390 0.010607
79 0.458749 0.045663 0.660707 0.694093 80 0.1 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 79 0.601674 0.715605 0.712488 0.677379 0.668186 0.689295 0.009611 0.000313 0.045561 0.015970
80 0.464768 0.043861 0.786385 0.854897 80 1 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 10 0.750357 0.857433 0.811376 0.854170 0.797562 0.853088 0.014199 0.001834 0.026139 0.001847
81 0.493957 0.044799 0.829148 0.958342 80 10 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 1 0.842780 0.951861 0.806106 0.966557 0.838506 0.956609 0.008514 0.005109 0.016371 0.006123
82 0.587251 0.042409 0.767804 0.988141 80 100 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 12 0.777542 0.990775 0.726114 0.991174 0.799718 0.982475 0.010468 0.000576 0.030812 0.004010
83 0.614917 0.043139 0.738744 0.991337 80 1000 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 75 0.753062 0.991593 0.723257 0.991472 0.739858 0.990945 0.019897 0.000223 0.012197 0.000281
84 0.626726 0.042994 0.738732 0.991337 80 10000 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 77 0.753015 0.991594 0.723230 0.991473 0.739898 0.990945 0.011102 0.000541 0.012191 0.000282
85 0.622219 0.045425 0.738759 0.991337 80 100000 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 70 0.753087 0.991592 0.723260 0.991473 0.739874 0.990946 0.017669 0.001972 0.012206 0.000281
86 0.614988 0.048456 0.738740 0.991337 80 1e+06 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 76 0.753031 0.991595 0.723252 0.991472 0.739882 0.990946 0.019633 0.002962 0.012188 0.000281
87 0.614861 0.043437 0.738745 0.991337 80 1e+07 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 74 0.753062 0.991592 0.723240 0.991474 0.739877 0.990945 0.002419 0.001253 0.012205 0.000282
88 0.628104 0.042915 0.738746 0.991337 80 1e+08 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 73 0.753040 0.991594 0.723245 0.991472 0.739898 0.990947 0.017771 0.000337 0.012195 0.000281
89 0.617600 0.044125 0.738753 0.991336 80 1e+09 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 71 0.753063 0.991590 0.723259 0.991474 0.739881 0.990945 0.015480 0.000374 0.012197 0.000281
90 0.611163 0.042932 0.738750 0.991337 80 1e+10 rbf {u'pca__n_components': 80, u'svr__kernel': u'r... 72 0.753039 0.991593 0.723283 0.991474 0.739872 0.990945 0.010227 0.000315 0.012178 0.000281

91 rows × 19 columns

Completed in -1490.37 sec

In [93]:
print len(y_pipelines_svr)
print y_scores_svr


5
[0.15630930533293441, 1.1704317973796174, 0.14732587939348427, 0.12487316466964694, 0.097026948461285234]

In [94]:
# Pick out the best performing models/pipelines based on mse for each predictor

# combine results lists from modeling cells
y_vars_pipelines = [y_pipelines_lin, y_pipelines_linsel, y_pipelines_ridge, y_pipelines_svr]
y_vars_scores = [y_scores_lin, y_scores_linsel, y_scores_ridge, y_scores_svr]

pipelines = np.array(y_vars_pipelines)
scores = np.array(y_vars_scores)

pipeline_winners = []

print pipelines.shape

# P sucks
print scores

for ind, y in enumerate(y_vars):
    # get index of best score
    best_ind = np.argmin(scores[:,ind])
    print(best_ind, ind)
    # fit the pipeline for all X
    pipelines[best_ind, ind].fit(X_wDepth,y)
    # capture the pipeline
    pipeline_winners.append(pipelines[best_ind, ind])
    
print len(pipeline_winners)


(4, 5)
[[ 0.16877459  1.10647336  0.1767721   0.15434747  0.11549188]
 [ 0.16842672  1.10076421  0.17877103  0.15445713  0.1096961 ]
 [ 0.1687742   1.07343443  0.16403397  0.14144016  0.11547904]
 [ 0.15630931  1.1704318   0.14732588  0.12487316  0.09702695]]
(3, 0)
(2, 1)
(3, 2)
(3, 3)
(3, 4)
5

In [95]:
# Iterate through test samples

allPredictions = []
pipeline_winners = y_pipelines_lin

for s_ind in range(len(test_x)):
    
    sampleId = test_ids[s_ind]
    sample = test_x_wdepth[s_ind]
    
    currentSamplePredictions = []
    
    # Use the winning model to estimate the outcome variables
    for ind in range(0, 5):      
        pred = pipeline_winners[ind].predict(sample.reshape(1,-1))[0]     
        currentSamplePredictions.append(pred)
    
    allPredictions.append(currentSamplePredictions) 
    #print len(allPredictions)
    
#print allPredictions
print 'Predictions calculated.'


Predictions calculated.

In [96]:
# Generate csv for AfricaSoil Kaggle

filename = 'jc_20170422_1.csv'

# Clean file
open(filename, 'w').close()
with open(filename, 'w') as f:
    f.write('PIDN,Ca,P,pH,SOC,Sand\n')  # python will convert \n to os.linesep

    # Iterate through test samples
    for i in range(len(allPredictions)):
        pred = allPredictions[i]
        testId = test_ids[i]
        text = testId + ',' + str(pred[0]) + ',' + str(pred[1]) + ',' + str(pred[2]) + ',' + str(pred[3]) + ',' + str(pred[4]) + '\n'
        f.write(text) 
    
f.close()

In [97]:
# Check where jupyter may drop the csv if it can't be found where expected

import os

fileDir = os.path.dirname(os.path.realpath('__file__'))
print fileDir


/Users/jcasper/Documents/Education/UCBerkeley-DS/2017_Spring/DATASCIW207_ML/kaggle_africa_soil/notebook

NOTES

Options for high dimensional data where large number of features and fewer number of observations: can choose random sets of variables and asses their importance using cross-validation; ridge regression, the lasso or elastic net for regularization (process of introducing additional information in order to solve an ill-posed problem or to prevent overfitting); choose a technique, such as a support vector machine or random forest that deals well with a large number of predictors.

LASSO (least absolute shrinkage and selection operator) is a regression analysis method that performs both variable selection and regularization in order to enhance the prediction accuracy and interpretability of the statistical model it produces.

When considering ML methods, consider:

  • the size of the training data
  • the number of features
  • the quality of features
  • the number of unique class labels
  • linear vs. non-linear problems

Always start simple: first algorithm to try would be naive Bayes, logistic regression, k-nearest neighbour (First start with one neighbour) and Fisher's linear discriminant before anything else. For advanced machine learning, ensemble methods are the ones that produces the best results as is shown by winners in kaggale competition and XGBOOST has been very popular among the kaggale winners. Neural Networks may be useful for predicting values but number of observations is low.

Subject: dirt quality for agriculture, Predictor variables: 3593 features (see feature_names), Response variables: 'Ca', 'P', 'pH', 'Soc', 'Sand

A continuous predictor variable is sometimes called a covariate and a categorical predictor variable is sometimes called a factor. In the cake experiment, a covariate could be various oven temperatures and a factor could be different ovens. Usually, you create a plot of predictor variables on the x-axis and response variables on the y-axis.

For continuous variables such as income, it is customary to do a log transformation to get it as close to a normal distribution as possible. You can then employ OLS and run some diagnostics to check your model fit. For other types of continuous variables, get a histogram and check the distribution. If it is somewhat normal, you can run an OLS and check the diagnostics and model fit.

References: