Tengo la ecuación $$\dfrac{da}{d\tau}=\sqrt{\Omega_m a^{-1} + \Omega_p a^{7/2} + \Omega_m \bar{\rho}_m a^{-4} + \Omega_p \bar{\rho}_p a^5}$$
Quiero resolver $$\dfrac{da}{d\tau}=f(a,\tau)$$
In [1]:
using TaylorSeries
In [80]:
ome_m=0.315;
ome_p=0.685;
rho_m=0.0;
rho_p=0.0;
In [3]:
affine(a) = a + taylor1_variable(typeof(a),25);
In [40]:
t = affine(1.0)
Out[40]:
In [ ]:
In [95]:
f1=1./sqrt(ome_m*((1./t) + (rho_m/t^(4.))) + ome_p*((t^(7/2.))+ rho_p*t^5));
In [96]:
f2=integTaylor(f1);
In [ ]:
In [99]:
s=Array{Float64,1}[]
@time for i in 0:0.000001:3
ss=evaluate(f1,i)
push!(s,[ss])
end
In [100]:
s
Out[100]:
In [8]:
using PyPlot
In [ ]:
ts=[0:0.001:100];
#ylim(0,10)
#xlim(0,1)
#plot(ts,s)
In [45]:
s
Out[45]:
In [ ]: