In [2]:
    
%pylab inline
    
    
In [6]:
    
import networkx as nx
import pandas as pd
import seaborn as sns
import scipy as sp
import scipy.stats as sps
    
In [7]:
    
sns.set_style('white')
sns.set_context('notebook')
    
In [8]:
    
G = nx.random_graphs.erdos_renyi_graph(100, .1)
    
In [43]:
    
def random_graph_maxc(N=100):
    P = np.arange(0,1,.001)
    graphs = [nx.random_graphs.erdos_renyi_graph(N, p) for p in P]
    c_max = [float(len(next(nx.connected_components(g)))) for g in graphs]
    return pd.Series(c_max, index=P*N)
    
In [45]:
    
maxc_df = pd.DataFrame([random_graph_maxc() for _ in xrange(10)])
    
In [51]:
    
maxc_df.median().plot(logx=True, logy=True)
    
    Out[51]:
    
In [ ]:
    
    
In [ ]:
    
    
In [ ]:
    
    
In [ ]: