In [ ]:
from thermostate import State, Q_, units
import numpy as np
%matplotlib inline
import matplotlib.pyplot as plt
In [ ]:
substance = 'air'
p_1 = Q_(1.0, 'bar')
T_1 = Q_(300.0, 'K')
T_3 = Q_(1700.0, 'K')
p2_p1 = Q_(8.0, 'dimensionless')
p_low = Q_(2.0, 'dimensionless')
p_high = Q_(50.0, 'dimensionless')
An ideal air-standard Brayton cycle operates at steady state with compressor inlet conditions of 300.0 K and 1.0 bar and a fixed turbine inlet temperature of 1700.0 K and a compressor pressure ratio of 8.0. For the cycle,
In the ideal Brayton cycle, work occurs in the isentropic compression and expansion. Therefore, the works are
$$ \begin{aligned} \frac{\dot{W}_c}{\dot{m}} &= h_1 - h_2 & \frac{\dot{W}_t}{\dot{m}} &= h_3 - h_4 \end{aligned} $$First, fixing the four states
In [ ]:
st_1 = State(substance, T=T_1, p=p_1)
h_1 = st_1.h.to('kJ/kg')
s_1 = st_1.s.to('kJ/(kg*K)')
s_2 = s_1
p_2 = p_1*p2_p1
st_2 = State(substance, p=p_2, s=s_2)
h_2 = st_2.h.to('kJ/kg')
T_2 = st_2.T
p_3 = p_2
st_3 = State(substance, p=p_3, T=T_3)
h_3 = st_3.h.to('kJ/kg')
s_3 = st_3.s.to('kJ/(kg*K)')
s_4 = s_3
p_4 = p_1
st_4 = State(substance, p=p_4, s=s_4)
h_4 = st_4.h.to('kJ/kg')
T_4 = st_4.T
Summarizing the states,
State | T | p | h | s |
---|---|---|---|---|
1 | 300.00 K | 1.00 bar | 426.30 kJ/kg | 3.89 kJ/(K kg) |
2 | 540.13 K | 8.00 bar | 670.65 kJ/kg | 3.89 kJ/(K kg) |
3 | 1700.00 K | 8.00 bar | 2007.09 kJ/kg | 5.19 kJ/(K kg) |
4 | 1029.42 K | 1.00 bar | 1206.17 kJ/kg | 5.19 kJ/(K kg) |
Then, the net work is calculated by
In [ ]:
W_c = h_1 - h_2
W_t = h_3 - h_4
W_net = W_c + W_t
In [ ]:
Q_23 = h_3 - h_2
eta = W_net/Q_23
In [ ]:
p_range = np.linspace(p_low, p_high, 50)
eta_l = np.zeros(shape=p_range.shape) * units.dimensionless
W_net_l = np.zeros(shape=p_range.shape) * units.kJ / units.kg
for i, p_ratio in enumerate(p_range):
s_2 = s_1
p_2 = p_1*p_ratio
st_2 = State(substance, p=p_2, s=s_2)
h_2 = st_2.h.to('kJ/kg')
T_2 = st_2.T
p_3 = p_2
st_3 = State(substance, p=p_3, T=T_3)
h_3 = st_3.h.to('kJ/kg')
s_3 = st_3.s.to('kJ/(kg*K)')
s_4 = s_3
p_4 = p_1
st_4 = State(substance, p=p_4, s=s_4)
h_4 = st_4.h.to('kJ/kg')
T_4 = st_4.T
W_c = h_1 - h_2
W_t = h_3 - h_4
W_net = W_c + W_t
W_net_l[i] = W_net
Q_23 = h_3 - h_2
eta = W_net/Q_23
eta_l[i] = eta
In [ ]:
fig, work_ax = plt.subplots()
work_ax.plot(p_range, W_net_l, label='Net work per unit mass flowing', color='C0')
eta_ax = work_ax.twinx()
eta_ax.plot(p_range, eta_l, label='Thermal efficiency', color='C1')
work_ax.set_xlabel('Pressure ratio $p_2/p_1$')
work_ax.set_ylabel('Net work per unit mass flowing (kJ/kg)')
eta_ax.set_ylabel('Thermal efficiency')
lines, labels = work_ax.get_legend_handles_labels()
lines2, labels2 = eta_ax.get_legend_handles_labels()
work_ax.legend(lines + lines2, labels + labels2, loc='best');
We note from this graph that the thermal efficiency of the cycle increases continuously as the pressure ratio increases. However, because there is a fixed turbine inlet temperature, the work per unit mass flowing has a maximum around $p_2/p_1$ = 20.