In [1]:
import pandas as pd
import numpy as np
import string
from collections import defaultdict
import matplotlib.pyplot as plt
import matplotlib
%matplotlib inline
matplotlib.style.use('ggplot')
import plotly
import plotly.plotly as py
plotly.tools.set_credentials_file(username='bbiggs', api_key='jrgs2lfv3u')
import seaborn as sns
In [2]:
df = pd.read_csv('data/train_data2.csv', encoding='latin-1')
print(len(df))
df.head()
Out[2]:
In [3]:
df['Released'] = pd.to_datetime(df['Released'])
df['Year'] = pd.DatetimeIndex(df['Released']).year
df['Month'] = pd.DatetimeIndex(df['Released']).month
df.head()
Out[3]:
In [4]:
df['Year'].describe().astype(int)
Out[4]:
In [5]:
# dictionary - year counts
yr_dict = df['Year'].value_counts().to_dict()
import operator
yr_lst = sorted(yr_dict.items(), key=operator.itemgetter(0)) # sort by year
yr_lst = yr_lst[::-1]
# plot histogram
plt.figure(figsize=(25,10))
ind = np.arange(len(yr_dict))
width = 0.35
bar_year = [year for year, count in yr_lst]
bar_count = [count for year, count in yr_lst]
plt.bar(ind, bar_count, width, color='r')
plt.ylabel('Count')
plt.xlabel('Year')
plt.title('Number of Torrents per Year')
plt.xticks(ind + width/2., (bar_year), rotation='vertical')
plt.yticks(np.arange(0, 91, 5))
plt.show()
In [6]:
# cut off at year
before = len(df)
yr_cut_bot = 1998
yr_cut_top = 2015
mask = (df['Year'] >= yr_cut_bot) & (df['Year'] < yr_cut_top)
df_yr = df.loc[mask]
df_yr.sort_values('Year').head()
after = len(df_yr)
print('{0} entries lost ({1}%) due to date cutoff between {2} and {3}'.format(before-after,
round((before/after)/before *100, 2), yr_cut_bot, yr_cut_top))
In [7]:
# 1998
mask = (df_yr['Year'] == 1998) & (df_yr['Total_Torrents'] > 100)
df_yr = df_yr[~mask]
# 1999
mask = (df_yr['Year'] >= 1999 & <= 2001) & (df_yr['Total_Torrents'] > 200)
df_yr = df_yr[~mask]
# 2000
mask = (df_yr['Year'] == 2000) & (df_yr['Total_Torrents'] > 200)
df_yr = df_yr[~mask]
# 2001
mask = (df_yr['Year'] == 2001) & (df_yr['Total_Torrents'] > 300)
df_yr = df_yr[~mask]
# 2002
mask = (df_yr['Year'] == 2002) & (df_yr['Total_Torrents'] > 300)
df_yr = df_yr[~mask]
# 2003
mask = (df_yr['Year'] == 2003) & (df_yr['Total_Torrents'] > 300)
df_yr = df_yr[~mask]
# 2004
# 2005
mask = (df_yr['Year'] == 2005) & (df_yr['Total_Torrents'] > 300)
df_yr = df_yr[~mask]
# 2006
mask = (df_yr['Year'] == 2006) & (df_yr['Total_Torrents'] > 300)
df_yr = df_yr[~mask]
# 2007
mask = (df_yr['Year'] == 2007) & (df_yr['Total_Torrents'] > 450)
df_yr = df_yr[~mask]
# 2010
mask = (df_yr['Year'] == 2010) & (df_yr['Total_Torrents'] > 800)
df_yr = df_yr[~mask]
# 2014
mask = (df_yr['Year'] == 2014) & (df_yr['Total_Torrents'] > 850)
df_yr = df_yr[~mask]
In [ ]:
import seaborn as sns
sns.set(style="ticks", context="talk")
# Load the example tips dataset
#df_sub = df_yr[df_yr['Year'] == 2014]
# Make a custom sequential palette using the cubehelix system
pal = sns.cubehelix_palette(4, 1.5, .75, light=.6, dark=.2)
# Plot tip as a function of toal bill across days
g = sns.lmplot(x="Prod_Budget", y="Total_Torrents", hue="Month", data=df_sub,
palette=pal, size=7)
# Use more informative axis labels than are provided by default
g.set_axis_labels("Production Budget ($)", "Total Torrents")
In [ ]:
# 1
mask = (df_yr['Month'] == 1) & (df_yr['Total_Torrents'] > 500)
df_yr = df_yr[~mask]
# 3
mask = (df_yr['Month'] == 3) & (df_yr['Total_Torrents'] > 800)
df_yr = df_yr[~mask]
# 4
mask = (df_yr['Month'] == 4) & (df_yr['Total_Torrents'] > 800)
df_yr = df_yr[~mask]
# 5
mask = (df_yr['Month'] == 5) & (df_yr['Total_Torrents'] > 1000)
df_yr = df_yr[~mask]
# 9
mask = (df_yr['Month'] == 9) & (df_yr['Total_Torrents'] > 800)
df_yr = df_yr[~mask]
# 10
mask = (df_yr['Month'] == 10) & (df_yr['Total_Torrents'] > 800)
df_yr = df_yr[~mask]
In [ ]:
import seaborn as sns
sns.set(style="ticks", context="talk")
# Load the example tips dataset
df_sub = df_yr[df_yr['Month'] == 12]
# Make a custom sequential palette using the cubehelix system
pal = sns.cubehelix_palette(4, 1.5, .75, light=.6, dark=.2)
# Plot tip as a function of toal bill across days
g = sns.lmplot(x="Prod_Budget", y="Total_Torrents", hue="Month", data=df_sub,
palette=pal, size=7)
# Use more informative axis labels than are provided by default
g.set_axis_labels("Production Budget ($)", "Total Torrents")
yr_dict = df_yr['Year'].value_counts().to_dict()
import operator yr_lst = sorted(yr_dict.items(), key=operator.itemgetter(0)) # sort by year yr_lst = yr_lst[::-1]
fig16 = plt.figure()
bar_year = [year for year, count in yr_lst] bar_count = [count for year, count in yr_lst]
sns.set_palette('husl') matplotlib.rc("figure", figsize=(8, 4))
plt.ylabel('Kernel Density Estimate') plt.xlabel('Year') plt.title('Number of Torrents per Year')
sns.distplot(bar_year, color="b") py.iplot_mpl(fig16, strip_style = True)
In [ ]:
import plotly.plotly as py
from plotly.tools import FigureFactory as FF
df_a = df_yr[['Prod_Budget', 'Year', 'Month', 'Total_Torrents']]
fig = FF.create_scatterplotmatrix(df_a, diag='box', index='Prod_Budget', colormap='Portland', colormap_type='seq', endpts=[-1, 0, 1], height=800, width=800, size=12, marker=dict(symbol=25)) py.iplot(fig, filename = 'Partition Numeric Data into Intervals')
In [ ]:
#fig = FF.create_scatterplotmatrix(df_a, diag='histogram', index='Prod_Budget',
# height=800, width=800)
#py.iplot(fig, filename='Histograms along Diagonal Subplots')
In [ ]:
# look at current data set AFTER year cutoff
plt.rcParams['figure.figsize'] = (15, 15)
_ = pd.tools.plotting.scatter_matrix(df_yr)
In [ ]:
# unique list of grouped genres as strings
unq_genres = df_yr['Genre'].unique()
unq_genres = unq_genres.tolist()
#print(len(unq_genres))
#print(unq_genres[:10])
# unique list of grouped genres as lists
lst_grp_genres = []
for lst in unq_genres:
temp = []
for genre in lst.split(','):
temp.append(genre)
lst_grp_genres.append(temp)
#print(len(lst_grp_genres))
#print(lst_grp_genres)
In [ ]:
# unique list of individual genres
ind_genre = set()
for lst in unq_genres:
for genre in lst.split(','):
ind_genre.add(genre.strip())
ind_genre = sorted(ind_genre)
#print(len(ind_genre))
#print(ind_genre)
In [ ]:
# dictionary - count of genre occurences
count = defaultdict(lambda:0)
for genre in ind_genre:
count[genre] = df_yr.Genre.str.contains(genre).sum()
import operator
srt = sorted(count.items(), key=operator.itemgetter(1))
srt = srt[::-1]
#print(srt)
In [ ]:
def split_to_array(ser):
split_array = np.array(ser.strip().replace(',','').split(' '))
return pd.Series(split_array)
genres = df_yr.Genre.apply(split_to_array)
genres = pd.Series(genres.values.ravel()).dropna()
genres = genres.value_counts().sort_values(ascending=False)
In [ ]:
In [ ]:
def convert_frequency(ser, genres=genres):
split_array = np.array(ser.strip().replace(',','').split(' '))
genre = genres.loc[split_array].argmax()
return genre
df_yr['Genre_Single'] = df_yr.Genre.apply(convert_frequency)
In [ ]:
# select only genres of significance
genre = ['Action', 'Adventure', 'Comedy', 'Drama']
df_sub = df_yr.loc[df_yr['Genre_Single'].isin(genre)]
# select only genres of significance
ratings = ['PG-13', 'PG', 'G', 'R']
df_sub = df_sub.loc[df_sub['Rated'].isin(ratings)]
#df_sub['Runtime'].value_counts()
#df_sub['Genre_Single'].value_counts()
#df_sub['Rated'].value_counts()
df_sub.describe()
In [ ]:
# entire dataframe
plt.rcParams['figure.figsize'] = (15, 15)
_ = pd.tools.plotting.scatter_matrix(df_sub)
In [ ]:
from patsy import dmatrices
patsy_formula = 'Total_Torrents ~ Prod_Budget + Year + Genre_Single'
y, x = dmatrices(patsy_formula, data=df_sub, return_type='dataframe')
In [ ]:
import statsmodels.api as sm
model = sm.OLS(y, x)
results = model.fit()
results.summary()
In [ ]:
from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(x, y)
mod_lr_score = model.score(x, y)
mod_lr_coef = model.coef_
In [ ]:
from sklearn import cross_validation as cv
from sklearn import metrics
x_train, x_test, y_train, y_test = cv.train_test_split(x,y,test_size=0.20,random_state=1234)
model = LinearRegression().fit(x_train, y_train)
# store results
mean_sq_err = metrics.mean_squared_error(y_train,model.predict(x_train))
cv_mod_score = model.score(x_train, y_train)
In [ ]:
# reset x, y otherwise errors occur
y, x = dmatrices(patsy_formula, data=df_sub, return_type='dataframe')
from sklearn.cross_validation import KFold
kf = KFold(len(df_sub), n_folds=10, shuffle=True)
for train_index, test_index in kf:
x_train, x_test = x.iloc[train_index], x.iloc[test_index]
y_train, y_test = y.iloc[train_index], y.iloc[test_index]
clf2 = LinearRegression().fit(x.iloc[train_index], y.iloc[train_index])
# store results
mean_sq_errKf = metrics.mean_squared_error(y_train,model.predict(x_train))
cvKf_mod_score = clf2.score(x,y)
In [ ]:
#NORMAL RESULTS
print('Model Linear Regression Score = {0}'.format(mod_lr_score))
print(' Mean Square Error = {0}'.format(mean_sq_err))
print(' Cross Validation Model Score = {0}'.format(cv_mod_score))
print(' Mean Squred Error K-Fold = {0}'.format(mean_sq_errKf))
print('Cross Val. K-Fold Model Score = {0}'.format(cvKf_mod_score))
In [ ]:
fig = plt.figure(figsize=(12,8))
fig = sm.graphics.plot_regress_exog(results,'Prod_Budget', fig=fig)
In [ ]:
_ = plt.plot(y, model.predict(x), 'ro')
In [ ]:
df.columns
In [ ]:
df_sub['log_budg']=np.log(df_sub.Prod_Budget)
#df_sub['log_year']=np.log(df_sub.Year)
#df_sub['log_run']=np.log(df_sub.Runtime)
df_sub['log_tor']=np.log(df_sub.Total_Torrents)
trans = df_sub[['log_budg', 'Year', 'log_tor']]
plt.rcParams['figure.figsize'] = (15, 15)
_ = pd.tools.plotting.scatter_matrix(trans)
In [ ]:
log_patsy_formula = 'log_tor ~ log_budg + Year + Genre_Single'
y, x = dmatrices(log_patsy_formula, data=df_sub, return_type='dataframe')
In [ ]:
import statsmodels.formula.api as smf
results = smf.ols(formula=log_patsy_formula, data=df_sub,).fit()
results.summary()
In [ ]:
from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(x, y)
# store results
log_mod_lr_score = model.score(x,y)
In [ ]:
from sklearn import cross_validation as cv
from sklearn import metrics
x_train, x_test, y_train, y_test = cv.train_test_split(x,y,test_size=0.20,random_state=1234)
model = LinearRegression().fit(x_train, y_train)
# store results
log_mean_sq_err = metrics.mean_squared_error(y_train,model.predict(x_train))
log_cv_mod_score = model.score(x_train, y_train)
In [ ]:
# reset x, y otherwise errors occur
y, x = dmatrices(log_patsy_formula, data=df_sub, return_type='dataframe')
from sklearn.cross_validation import KFold
kf = KFold(len(df_sub), n_folds=10, shuffle=True)
for train_index, test_index in kf:
x_train, x_test = x.iloc[train_index], x.iloc[test_index]
y_train, y_test = y.iloc[train_index], y.iloc[test_index]
clf2 = LinearRegression().fit(x.iloc[train_index], y.iloc[train_index])
# store results
log_mean_sq_errKf = metrics.mean_squared_error(y_train,model.predict(x_train))
log_cvKf_mod_score = clf2.score(x,y)
In [ ]:
#LOG RESULTS
print('Log Model Linear Regression Score = {0}'.format(log_mod_lr_score))
print(' Log Mean Square Error = {0}'.format(log_mean_sq_err))
print(' Log Cross Validation Model Score = {0}'.format(log_cv_mod_score))
print(' Log Mean Squred Error K-Fold = {0}'.format(log_mean_sq_errKf))
print('Log Cross Val. K-Fold Model Score = {0}'.format(log_cvKf_mod_score))
In [ ]:
df_TEST = pd.read_csv('data/test_data2.csv', encoding='latin-1')
df_TEST['log_budg']=np.log(df_TEST.Prod_Budget)
df_TEST['log_tor']=np.log(df_TEST.Total_Torrents)
def split_to_array(ser):
split_array = np.array(ser.strip().replace(',','').split(' '))
return pd.Series(split_array)
genres = df_yr.Genre.apply(split_to_array)
genres = pd.Series(genres.values.ravel()).dropna()
genres = genres.value_counts().sort_values(ascending=False)
def convert_frequency(ser, genres=genres):
split_array = np.array(ser.strip().replace(',','').split(' '))
genre = genres.loc[split_array].argmax()
return genre
df_TEST['Genre_Single'] = df_TEST.Genre.apply(convert_frequency)
log_patsy_formula_test = 'log_tor ~ log_budg + Year + Genre_Single'
y, x = dmatrices(log_patsy_formula_test, data=df_TEST, return_type='dataframe')
print(clf2.score(x_test, y_test))
print(metrics.mean_squared_error(y_test,model.predict(x_test)))
In [ ]:
_ = plt.plot(y, model.predict(x), 'bo')
In [ ]:
plt.figure(figsize=(25,10))
ind = np.arange(len(yr_dict))
width = 0.35
bar_year = [year for year, count in yr_lst]
bar_count = [count for year, count in yr_lst]
plt.bar(ind, bar_count, width, color='r')
plt.ylabel('Count')
plt.xlabel('Year')
plt.title('Number of Torrents per Year')
plt.xticks(ind + width/2., (bar_year), rotation='vertical')
plt.yticks(np.arange(0, 91, 5))
plt.show()
In [ ]:
#log_tor ~ log_budg + Year + Month + log_run + Genre_Single'
In [ ]:
fig = plt.figure(figsize=(12,8))
fig = sm.graphics.plot_regress_exog(results,'log_budg', fig=fig)
In [ ]:
fig = plt.figure(figsize=(12,8))
fig = sm.graphics.plot_regress_exog(results,'Year', fig=fig)
In [ ]:
#fig = plt.figure(figsize=(12,8))
#fig = sm.graphics.plot_regress_exog(results,'Month', fig=fig)
In [ ]:
plt.figure(figsize=(15,10))
plt.axis([0, 450000000, 0, 1500])
plt.xlabel('Production Budget')
plt.ylabel('Torrents')
plt.title('Torrents vs. Production Budget - All')
plt.scatter(df_sub['Prod_Budget'], df_sub['Total_Torrents'], alpha=0.5, s=50)
In [ ]:
In [ ]: