In [88]:
import requests
from bs4 import BeautifulSoup
import json
import datetime

TODO:

  • Add delay to crawler to mitigate risk of hammering their site.
  • Dump all data into a single file instead of weekly files.
  • Further cleanup of data types being pushed into the dict.

In [213]:
def the_numbers_spider(max_pages):
    # BS4 pulls the table, converts the results into a string, then recreates a new soup so that the text method can be run on it.
    page = 1
    
    # Dict to hold weekly data
    weeklyData = {}
    
    # Declare starting dates. This will be changed to the first weekly report back in 1977.
    date = datetime.date(1991, 12, 27) # This creates a datetime object that is not sliceable like a string is.
    dateString = str(date)
    
    while page <= max_pages:
        url = "http://www.the-numbers.com/box-office-chart/weekly/" + dateString[0:4] + "/" + dateString[5:7] + "/" + dateString[8:10]
#         print(url)
#         print(dateString)
        source_code = requests.get(url)
        plain_text = source_code.text
        soup = BeautifulSoup(plain_text, 'lxml')
        
        # Store all the table rows in the second table as a BS4 object.
        tableRows = soup.find_all('table')[1].find_all('tr')
        
        # Save the data into the dictionary.
        for row in tableRows[1:]:
            title = row.a.get_text()
            weeklyData[title] = {}
            weeklyData[title]['weekEnded'] = dateString
            weeklyData[title]['currentRank'] = row.td.get_text()
            weeklyData[title]['prevRank'] = row.select('td')[1].get_text(strip=True)[1:-1] # Ignores the parens
            weeklyData[title]['distributor'] = row.select('a')[1].get_text(strip=True)
            weeklyData[title]['gross'] = int(row.select('td')[4].get_text(strip=True)[1:].replace(",", "")) # Finds the string for gross rev, strips lead/trailing spaces, replaces the commas with nothing, and ignores the first char which is a dollar sign. Whew.
            weeklyData[title]['change'] = row.select('td')[5].get_text(strip=True)
            weeklyData[title]['theaters'] = int(row.select('td')[6].get_text(strip=True).replace(",", ""))
            weeklyData[title]['perThtr'] = int(row.select('td')[7].get_text(strip=True)[1:].replace(",", ""))
            weeklyData[title]['totalGross'] = int(row.select('td')[8].get_text(strip=True)[1:].replace(",", ""))
            weeklyData[title]['grossDays'] = int(row.select('td')[9].get_text(strip=True).replace(",", ""))
            
#         # Debug print.
#         print(weeklyData)

        # Dump the dict into a json file.
        # Will think about writing it all to one giant file.
        with open('the-numbers_weekly ' + dateString + ".json", mode='wt', encoding='utf-8') as file:
            json.dump(weeklyData, file)
            
        # Increment operations
        date += datetime.timedelta(days=7)
        dateString = str(date)            
        page += 1
        
    print("done!")

In [214]:
the_numbers_spider(3)


done!