In [1]:
import os
import sys
import numpy as np
import flopy
print(sys.version)
print('numpy version: {}'.format(np.__version__))
print('flopy version: {}'.format(flopy.__version__))
First, we will create a simple model structure
In [2]:
nlay, nrow, ncol = 10, 10, 10
perlen = np.zeros((10), dtype=np.float) + 10
nper = len(perlen)
ibound = np.ones((nlay,nrow,ncol), dtype=np.int)
botm = np.arange(-1,-11,-1)
top = 0.
In [3]:
model_ws = 'data'
modelname = 'ssmex'
mf = flopy.modflow.Modflow(modelname, model_ws=model_ws)
dis = flopy.modflow.ModflowDis(mf, nlay=nlay, nrow=nrow, ncol=ncol,
perlen=perlen, nper=nper, botm=botm, top=top,
steady=False)
bas = flopy.modflow.ModflowBas(mf, ibound=ibound, strt=top)
lpf = flopy.modflow.ModflowLpf(mf, hk=100, vka=100, ss=0.00001, sy=0.1)
oc = flopy.modflow.ModflowOc(mf)
pcg = flopy.modflow.ModflowPcg(mf)
rch = flopy.modflow.ModflowRch(mf)
We'll track the cell locations for the SSM
data using the MODFLOW
boundary conditions.
Get a dictionary (dict
) that has the SSM
itype
for each of the boundary types.
In [4]:
itype = flopy.mt3d.Mt3dSsm.itype_dict()
print(itype)
print(flopy.mt3d.Mt3dSsm.get_default_dtype())
ssm_data = {}
Add a general head boundary (ghb
). The general head boundary head (bhead
) is 0.1 for the first 5 stress periods with a component 1 (comp_1) concentration of 1.0 and a component 2 (comp_2) concentration of 100.0. Then bhead
is increased to 0.25 and comp_1 concentration is reduced to 0.5 and comp_2 concentration is increased to 200.0
In [5]:
ghb_data = {}
print(flopy.modflow.ModflowGhb.get_default_dtype())
ghb_data[0] = [(4, 4, 4, 0.1, 1.5)]
ssm_data[0] = [(4, 4, 4, 1.0, itype['GHB'], 1.0, 100.0)]
ghb_data[5] = [(4, 4, 4, 0.25, 1.5)]
ssm_data[5] = [(4, 4, 4, 0.5, itype['GHB'], 0.5, 200.0)]
for k in range(nlay):
for i in range(nrow):
ghb_data[0].append((k, i, 0, 0.0, 100.0))
ssm_data[0].append((k, i, 0, 0.0, itype['GHB'], 0.0, 0.0))
ghb_data[5] = [(4, 4, 4, 0.25, 1.5)]
ssm_data[5] = [(4, 4, 4, 0.5, itype['GHB'], 0.5, 200.0)]
for k in range(nlay):
for i in range(nrow):
ghb_data[5].append((k, i, 0, -0.5, 100.0))
ssm_data[5].append((k, i, 0, 0.0, itype['GHB'], 0.0, 0.0))
Add an injection well
. The injection rate (flux
) is 10.0 with a comp_1 concentration of 10.0 and a comp_2 concentration of 0.0 for all stress periods. WARNING: since we changed the SSM
data in stress period 6, we need to add the well to the ssm_data for stress period 6.
In [6]:
wel_data = {}
print(flopy.modflow.ModflowWel.get_default_dtype())
wel_data[0] = [(0, 4, 8, 10.0)]
ssm_data[0].append((0, 4, 8, 10.0, itype['WEL'], 10.0, 0.0))
ssm_data[5].append((0, 4, 8, 10.0, itype['WEL'], 10.0, 0.0))
Add the GHB
and WEL
packages to the mf
MODFLOW
object instance.
In [7]:
ghb = flopy.modflow.ModflowGhb(mf, stress_period_data=ghb_data)
wel = flopy.modflow.ModflowWel(mf, stress_period_data=wel_data)
In [8]:
mt = flopy.mt3d.Mt3dms(modflowmodel=mf, modelname=modelname, model_ws=model_ws)
btn = flopy.mt3d.Mt3dBtn(mt, sconc=0, ncomp=2, sconc2=50.0)
adv = flopy.mt3d.Mt3dAdv(mt)
ssm = flopy.mt3d.Mt3dSsm(mt, stress_period_data=ssm_data)
gcg = flopy.mt3d.Mt3dGcg(mt)
Let's verify that stress_period_data
has the right dtype
In [9]:
print(ssm.stress_period_data.dtype)
In [10]:
swt = flopy.seawat.Seawat(modflowmodel=mf, mt3dmodel=mt,
modelname=modelname, namefile_ext='nam_swt', model_ws=model_ws)
vdf = flopy.seawat.SeawatVdf(swt, mtdnconc=0, iwtable=0, indense=-1)
In [11]:
mf.write_input()
mt.write_input()
swt.write_input()
And finally, modify the vdf
package to fix indense
.
In [12]:
fname = modelname + '.vdf'
f = open(os.path.join(model_ws, fname),'r')
lines = f.readlines()
f.close()
f = open(os.path.join(model_ws, fname),'w')
for line in lines:
f.write(line)
for kper in range(nper):
f.write("-1\n")
f.close()
In [ ]: