Binary vector generator

Version 1

Type checking


In [2]:
from scipy.special import comb
import numpy as np

def how_many(max_n = 6, length = 16):
    """
    Compute how many different binary vectors of a given length can be formed up to a given number.
    If a list is passed, compute the vectors as specified in the list. 
    """
    if isinstance(max_n, int): 
        indexes = range(1,max_n+1)
    if isinstance(max_n, list): 
        indexes = max_n 
    else:
        raise TypeError("how_many(x,y) requires x to be either list or int")
        
    rows_n=0
    for i in indexes:
        rows_n = rows_n + comb(length,i, exact=True)
    return(rows_n)

    
def binary_vectors(length = 16, max_n = 6, one_hot = False):
    """
    Return an array of size [how_many(max_n, length), length]
    Each row is a binary vector with up to max_n ones. 
    Return a label array of size how_many(max_n, length) either as 
    integer or as one_hot representation
    
    The function computes all possibilities by converting successive integers into
    binary representation and then extracts those within range
    """

    #Compute the dimension of the matrix for memory allocation
    # numbers of column 
    columns_n =  16
    # numbers of rows
    rows_n = 2**columns_n
    #location matrix 
    locations = np.zeros((rows_n, columns_n))

    #populate the location matrix
    for i in range(rows_n):
        bin_string = np.binary_repr(i,length)
        # we need to convert the binary string into a "boolean vector"
        # http://stackoverflow.com/questions/29091869/convert-bitstring-string-of-1-and-0s-to-numpy-array
        bin_array = np.fromstring(bin_string,'u1') - ord('0')
        locations[i,:] = bin_array
    
    #Exctrat vector within range 
    locations = locations[np.sum(locations, axis=1)<=max_n]
    
    return locations 

# The 50.000 inputs 
# Repeat the matrix 4 times and cut the excess 
# inputs = np.tile(locations,(4,1))
# inputs = inputs[0:50000,:]
# labels = np.sum(inputs, axis=1).reshape(50000,1)

# First we store the 
# print("vector {} has label {}".format(inputs[2532,:], labels[2532,:]))

Binary vector generator

Version 2 - via Itertool


In [3]:
# def binary_vector_2(rows_n = [2,4,6,8,10], columns_n = 10):
#     rows = how_many(rows_n, 10)
#     index = 0
#     locations = np.zeros((rows, columns_n))

#     for i in rows_n:
#         for bin_string in kbits(10,i):
#             bin_array = np.fromstring(bin_string,'u1') - ord('0')
#             locations[index,:] = bin_array
#             index = index+1
#     return locations

# inputs = binary_vector_2()
# labels = find_labels(inputs, one_hot=True)
# #dataset_ver = Dataset(inputs, labels)
# #pickle_test(dataset_ver)
# inputs.shape

In [4]:
import numpy as np 
import itertools
from scipy.special import comb

def kbits(n, k):
    """ Generate a list of ordered binary strings representing all the possibile 
    way n chooses k. 
    Args:
        n (int): set cardinality 
        k (int): subset cardinality 
        
    Returns:
        result (string): list of binary strings 
    """
    result = []
    for bits in itertools.combinations(range(n), k):
        s = ['0'] * n
        for bit in bits:
            s[bit] = '1'
        result.append(''.join(s))
    return result

def binary_vector_2(rows_n = [2,4,6,8,10], distribution=[45], columns_n = 10):
    """ Matrix of binary vectors from distribution. 
    Args: 
        rows_n (int, ndarray): nx1
        distribution (int, ndarray): nx1
    
    Returns: 
        ndarray of dimension rows_n * distribution, columns_n
        
    TODO: check inputs, here given as list, but should it be a ndarray? 
    remove index accumulator and rewrite via len(kbit)
    
    Examples: 
        Should be written in doctest format and should illustrate how
        to use the function.
        distribution=comb(columns_n, row)
        returns all possible combinations: in reality not, should remove randomness: or better set flag 
        replacement = False 
    """
    
    rows_n = np.array(rows_n)
    distribution = np.array(distribution)
    
    assert np.all(rows_n >0)
    assert np.all(distribution >0), "Distribution values must be positive. {} provided".format(distribution)
    
    if len(distribution) == 1:
        distribution = np.repeat(distribution, len(rows_n))
    
    assert len(distribution) == len(rows_n)
    
    rows = np.sum(distribution)
    index = 0
    locations = np.zeros((rows, columns_n))
    
    cluster_size = comb(columns_n,rows_n)

    for i in range(len(rows_n)):
        kbit = kbits(10,rows_n[i])
        take_this = np.random.randint(cluster_size[i], size=distribution[i]) 
        lista =[] 
        for indices in take_this:
            lista.append(kbit[indices])
        kbit = lista
        
        for bin_string in kbit:
            bin_array = np.fromstring(bin_string,'u1') - ord('0')
            locations[index,:] = bin_array
            index = index+1
    return locations

Accumulator Inputs


In [5]:
import numpy as np 
class accumulatorMatrix(object):
    """
    Generate a matrix which row vectors correspond to accumulated numerosity, where each number 
    is coded by repeating 1 times times. If zero = true, the zero vector is included. 
    
    Args:
        max_number (int): the greatest number to be represented
        length (int): vectors length, if not provided is computed as the minimum length compatible 
        times (int): length of unity representation
        zero (bool): whether the zero vector is included or excluded 
    
    Returns: 
        outputs (int, ndarray): max_number x length ndarray 
    """
    def __init__(self, max_number, length=None, times=2, zero=False):
        self.max_number = max_number
        self.length =  length 
        self.times = times 
        self.zero = zero 

        if not length: 
            self.length = self.times * self.max_number

        assert self.max_number == self.length/times 

        if self.zero: 
            self.max_number = self.max_number + 1
            add = 0
        else:
            add = 1

        self.outputs = np.zeros((self.max_number, self.length),  dtype=int)
        for i in range(0,self.max_number):
            self.outputs[i,:self.times * (i+add)].fill(1)
        
    def shuffle_(self):
        np.random.shuffle(self.outputs)
    
    #def unshuffle(self): 
    """We want to access the random shuffle in order to have the list
    http://stackoverflow.com/questions/19306976/python-shuffling-with-a-parameter-to-get-the-same-result"""
        
        
    def replicate(self, times=1): 
        self.outputs = np.tile(self.outputs, [times, 1])

In [6]:
import warnings 

def accumulator_matrix(max_number, length=None, times=2, zero=False):
    """
    Generate a matrix which row vectors correspond to accumulated numerosity, where each number 
    is coded by repeating 1 times times. If zero = true, the zero vector is included. 
    
    Args:
        max_number (int): the greatest number to be represented
        length (int): vectors length, if not provided is computed as the minimum length compatible 
        times (int): length of unity representation
        zero (bool): whether the zero vector is included or excluded 
    
    Returns: 
        outputs (int, ndarray): max_number x length ndarray 
    """
    warnings.warn("shouldn't use this function anymore! Now use the class accumulatorMatrix.",DeprecationWarning)
    if not length: 
        length = times * max_number
        
    assert max_number == length/times 
    
    if zero: 
        max_number = max_number + 1
        add = 0
    else:
        add = 1
        
    outputs = np.zeros((max_number, length),  dtype=int)
    for i in range(0,max_number):
        outputs[i,:times * (i+add)].fill(1)
    return outputs

        
        
# np.random.seed(105)
# Weights = np.random.rand(5,10)

Label the data


In [7]:
def find_labels(inputs, multiple=1, one_hot=False):
    """
    Generate the labels corresponding to binary vectors. If one_hot = true, the label are
    on hot encoded, otherwise integers. 
    
    Args: 
        inputs (int, ndarray): ndarray row samples
        multiple (int): lenght of unity representation 
        one_hot (bool): False for integer labels, True for one hot encoded labels 
        
    Returns:
        labels (int): integer or one hot encoded labels  
    
    """
    labels = (np.sum(inputs, axis=1)/multiple).astype(int)
    if one_hot: 
        size = np.max(labels)
        label_matrix = np.zeros((labels.shape[0], size+1))
        label_matrix[np.arange(labels.shape[0]), labels] = 1
        labels = label_matrix
    return labels

Create dataset

Namedtuple


In [8]:
from collections import namedtuple 
def Dataset(inputs, labels):
    """Creates dataset
    Args:
        inputs (array): 
        labels (array): corresponding labels 
    
    Returns:
        Datasets: named tuple
    """
    Dataset = namedtuple('Dataset', ['data', 'labels'])
    Datasets = Dataset(inputs, labels)
    return Datasets

Pickling


In [9]:
from collections import namedtuple 
Dataset = namedtuple('Dataset', ['data', 'labels'])
#data_verguts = Dataset(inputs, labels)

import pickle

def pickle_test(Data, name):
    f = open(name+'.pickle', 'ab')
    pickle.dump(Data, f)
    f.close()

#pickle_test(data_verguts, "verguts")

# # Test opening the pickle 
# pickle_in = open("Data.pickle", "rb")
# ex = pickle.load(pickle_in)
# ex.labels[25]

We now pickle the named_tuple cfr. When to pickle

Simon and Petersons 2000, Input Dataset

The dataset consist of vecors of lenght 16 and vector of lenght 6 as label, one hot encoded. 50.000 inputs pattern are generated

A numerosities in range(6) is picked randomly. Then locations are randomly selected.


In [ ]:

Verguts and Fias: Inputs

Uniformly distributed input

The outlier 5 is represented only 10 times, this to allow the net to see it a reasonable numbers of times, but not too much, considering that it can only have one shape.


In [10]:
rows_n = [2,4,6,8,10]
#comb(10, rows_n)
inputs = binary_vector_2(distribution = comb(10, rows_n))
labels = find_labels(inputs, multiple=2, one_hot=True)

count = 0
for i in inputs:
    print(count, i, int(np.sum(i)/2), labels[count])
    count +=1


/home/clint/.local/lib/python3.5/site-packages/ipykernel/__main__.py:56: VisibleDeprecationWarning: using a non-integer number instead of an integer will result in an error in the future
/home/clint/.local/lib/python3.5/site-packages/ipykernel/__main__.py:62: VisibleDeprecationWarning: using a non-integer number instead of an integer will result in an error in the future
0 [ 0.  0.  1.  0.  1.  0.  0.  0.  0.  0.] 1 [ 0.  1.  0.  0.  0.  0.]
1 [ 0.  0.  0.  0.  0.  0.  1.  0.  0.  1.] 1 [ 0.  1.  0.  0.  0.  0.]
2 [ 0.  0.  1.  0.  0.  1.  0.  0.  0.  0.] 1 [ 0.  1.  0.  0.  0.  0.]
3 [ 1.  0.  0.  0.  0.  0.  0.  1.  0.  0.] 1 [ 0.  1.  0.  0.  0.  0.]
4 [ 1.  1.  0.  0.  0.  0.  0.  0.  0.  0.] 1 [ 0.  1.  0.  0.  0.  0.]
5 [ 1.  1.  0.  0.  0.  0.  0.  0.  0.  0.] 1 [ 0.  1.  0.  0.  0.  0.]
6 [ 1.  0.  0.  1.  0.  0.  0.  0.  0.  0.] 1 [ 0.  1.  0.  0.  0.  0.]
7 [ 0.  0.  0.  0.  1.  1.  0.  0.  0.  0.] 1 [ 0.  1.  0.  0.  0.  0.]
8 [ 0.  0.  1.  0.  0.  0.  0.  0.  1.  0.] 1 [ 0.  1.  0.  0.  0.  0.]
9 [ 0.  1.  0.  0.  0.  0.  0.  0.  0.  1.] 1 [ 0.  1.  0.  0.  0.  0.]
10 [ 0.  1.  0.  0.  0.  0.  0.  0.  0.  1.] 1 [ 0.  1.  0.  0.  0.  0.]
11 [ 1.  1.  0.  0.  0.  0.  0.  0.  0.  0.] 1 [ 0.  1.  0.  0.  0.  0.]
12 [ 0.  0.  1.  0.  0.  0.  0.  0.  0.  1.] 1 [ 0.  1.  0.  0.  0.  0.]
13 [ 1.  0.  0.  0.  0.  0.  0.  0.  0.  1.] 1 [ 0.  1.  0.  0.  0.  0.]
14 [ 1.  0.  0.  0.  0.  1.  0.  0.  0.  0.] 1 [ 0.  1.  0.  0.  0.  0.]
15 [ 0.  0.  0.  0.  0.  1.  0.  1.  0.  0.] 1 [ 0.  1.  0.  0.  0.  0.]
16 [ 0.  0.  1.  0.  0.  1.  0.  0.  0.  0.] 1 [ 0.  1.  0.  0.  0.  0.]
17 [ 0.  0.  0.  0.  0.  0.  0.  0.  1.  1.] 1 [ 0.  1.  0.  0.  0.  0.]
18 [ 0.  1.  0.  0.  0.  0.  0.  0.  1.  0.] 1 [ 0.  1.  0.  0.  0.  0.]
19 [ 0.  1.  0.  0.  0.  0.  0.  1.  0.  0.] 1 [ 0.  1.  0.  0.  0.  0.]
20 [ 0.  0.  0.  0.  0.  0.  0.  1.  0.  1.] 1 [ 0.  1.  0.  0.  0.  0.]
21 [ 0.  0.  0.  0.  1.  0.  1.  0.  0.  0.] 1 [ 0.  1.  0.  0.  0.  0.]
22 [ 0.  0.  0.  0.  0.  0.  0.  1.  0.  1.] 1 [ 0.  1.  0.  0.  0.  0.]
23 [ 0.  0.  0.  0.  0.  1.  1.  0.  0.  0.] 1 [ 0.  1.  0.  0.  0.  0.]
24 [ 0.  0.  0.  0.  0.  0.  1.  1.  0.  0.] 1 [ 0.  1.  0.  0.  0.  0.]
25 [ 0.  0.  0.  0.  0.  0.  1.  1.  0.  0.] 1 [ 0.  1.  0.  0.  0.  0.]
26 [ 0.  0.  0.  1.  0.  1.  0.  0.  0.  0.] 1 [ 0.  1.  0.  0.  0.  0.]
27 [ 0.  0.  1.  0.  0.  0.  1.  0.  0.  0.] 1 [ 0.  1.  0.  0.  0.  0.]
28 [ 0.  0.  0.  0.  0.  0.  1.  1.  0.  0.] 1 [ 0.  1.  0.  0.  0.  0.]
29 [ 0.  0.  1.  0.  0.  1.  0.  0.  0.  0.] 1 [ 0.  1.  0.  0.  0.  0.]
30 [ 0.  0.  0.  0.  1.  0.  1.  0.  0.  0.] 1 [ 0.  1.  0.  0.  0.  0.]
31 [ 0.  0.  0.  0.  0.  0.  0.  1.  1.  0.] 1 [ 0.  1.  0.  0.  0.  0.]
32 [ 0.  0.  0.  1.  1.  0.  0.  0.  0.  0.] 1 [ 0.  1.  0.  0.  0.  0.]
33 [ 0.  0.  0.  0.  0.  1.  1.  0.  0.  0.] 1 [ 0.  1.  0.  0.  0.  0.]
34 [ 0.  0.  1.  0.  0.  0.  0.  0.  1.  0.] 1 [ 0.  1.  0.  0.  0.  0.]
35 [ 0.  0.  1.  0.  0.  0.  0.  0.  0.  1.] 1 [ 0.  1.  0.  0.  0.  0.]
36 [ 0.  0.  0.  1.  0.  0.  0.  0.  1.  0.] 1 [ 0.  1.  0.  0.  0.  0.]
37 [ 0.  0.  0.  0.  0.  1.  0.  1.  0.  0.] 1 [ 0.  1.  0.  0.  0.  0.]
38 [ 0.  0.  0.  0.  1.  1.  0.  0.  0.  0.] 1 [ 0.  1.  0.  0.  0.  0.]
39 [ 0.  0.  0.  0.  0.  0.  0.  1.  0.  1.] 1 [ 0.  1.  0.  0.  0.  0.]
40 [ 0.  0.  0.  1.  0.  0.  0.  0.  0.  1.] 1 [ 0.  1.  0.  0.  0.  0.]
41 [ 0.  0.  0.  0.  1.  0.  0.  1.  0.  0.] 1 [ 0.  1.  0.  0.  0.  0.]
42 [ 0.  1.  0.  0.  0.  0.  0.  0.  0.  1.] 1 [ 0.  1.  0.  0.  0.  0.]
43 [ 0.  0.  0.  0.  1.  0.  0.  1.  0.  0.] 1 [ 0.  1.  0.  0.  0.  0.]
44 [ 0.  0.  0.  0.  1.  0.  0.  0.  1.  0.] 1 [ 0.  1.  0.  0.  0.  0.]
45 [ 1.  1.  0.  0.  1.  0.  0.  1.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
46 [ 1.  0.  1.  1.  0.  0.  0.  1.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
47 [ 1.  0.  0.  1.  0.  0.  0.  0.  1.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
48 [ 0.  0.  1.  0.  1.  0.  1.  0.  0.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
49 [ 0.  1.  0.  1.  1.  0.  1.  0.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
50 [ 0.  0.  0.  1.  0.  1.  1.  1.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
51 [ 1.  0.  0.  1.  0.  0.  1.  0.  0.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
52 [ 0.  0.  0.  1.  1.  0.  0.  0.  1.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
53 [ 1.  0.  1.  0.  0.  1.  0.  1.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
54 [ 1.  1.  1.  0.  0.  0.  0.  1.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
55 [ 0.  1.  0.  1.  0.  0.  1.  0.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
56 [ 0.  1.  0.  0.  0.  1.  0.  1.  0.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
57 [ 1.  0.  0.  0.  0.  0.  1.  1.  0.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
58 [ 0.  1.  0.  0.  0.  0.  1.  1.  0.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
59 [ 0.  0.  1.  1.  0.  1.  0.  0.  0.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
60 [ 0.  0.  1.  1.  1.  0.  0.  0.  0.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
61 [ 1.  0.  0.  0.  0.  0.  1.  0.  1.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
62 [ 1.  0.  0.  0.  1.  0.  1.  1.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
63 [ 1.  0.  1.  1.  0.  0.  0.  1.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
64 [ 1.  0.  0.  0.  0.  1.  1.  0.  0.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
65 [ 0.  0.  1.  1.  0.  0.  1.  0.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
66 [ 1.  0.  0.  1.  0.  0.  0.  1.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
67 [ 0.  0.  0.  1.  1.  0.  1.  0.  0.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
68 [ 0.  0.  1.  1.  1.  1.  0.  0.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
69 [ 1.  0.  1.  1.  0.  0.  0.  0.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
70 [ 0.  1.  0.  1.  1.  0.  0.  0.  0.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
71 [ 0.  0.  0.  0.  1.  0.  0.  1.  1.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
72 [ 1.  1.  0.  0.  0.  0.  0.  1.  0.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
73 [ 0.  0.  0.  0.  0.  0.  1.  1.  1.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
74 [ 0.  0.  0.  0.  1.  1.  1.  1.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
75 [ 0.  1.  0.  1.  0.  0.  1.  1.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
76 [ 0.  0.  1.  0.  1.  1.  0.  0.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
77 [ 0.  1.  0.  1.  1.  0.  0.  1.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
78 [ 0.  0.  0.  0.  0.  0.  1.  1.  1.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
79 [ 1.  0.  1.  0.  0.  1.  0.  0.  0.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
80 [ 0.  1.  1.  1.  0.  0.  0.  0.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
81 [ 1.  0.  1.  1.  0.  1.  0.  0.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
82 [ 0.  0.  0.  0.  0.  1.  1.  1.  0.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
83 [ 0.  0.  1.  0.  1.  0.  1.  1.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
84 [ 0.  1.  0.  1.  0.  0.  0.  1.  0.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
85 [ 1.  1.  0.  0.  0.  0.  1.  1.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
86 [ 1.  0.  1.  0.  0.  1.  0.  0.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
87 [ 1.  0.  1.  0.  1.  1.  0.  0.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
88 [ 1.  0.  0.  1.  0.  0.  0.  0.  1.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
89 [ 0.  1.  1.  1.  0.  1.  0.  0.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
90 [ 0.  1.  1.  0.  0.  1.  0.  0.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
91 [ 0.  0.  1.  0.  1.  1.  0.  0.  0.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
92 [ 1.  0.  1.  1.  0.  0.  1.  0.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
93 [ 0.  1.  0.  0.  0.  1.  1.  0.  0.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
94 [ 0.  1.  1.  0.  0.  0.  1.  1.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
95 [ 1.  1.  1.  1.  0.  0.  0.  0.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
96 [ 0.  0.  0.  1.  0.  1.  0.  0.  1.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
97 [ 0.  0.  0.  0.  1.  1.  0.  1.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
98 [ 0.  0.  0.  0.  1.  0.  0.  1.  1.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
99 [ 0.  1.  1.  0.  0.  0.  0.  1.  0.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
100 [ 0.  1.  0.  1.  0.  0.  0.  1.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
101 [ 0.  1.  1.  1.  0.  0.  1.  0.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
102 [ 0.  0.  0.  0.  0.  0.  1.  1.  1.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
103 [ 1.  0.  0.  1.  0.  0.  1.  1.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
104 [ 0.  0.  1.  0.  1.  1.  0.  0.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
105 [ 1.  0.  0.  1.  0.  0.  0.  0.  1.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
106 [ 0.  0.  1.  1.  1.  1.  0.  0.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
107 [ 1.  1.  0.  0.  0.  0.  0.  1.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
108 [ 1.  0.  1.  0.  0.  0.  0.  0.  1.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
109 [ 1.  1.  0.  1.  0.  0.  0.  1.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
110 [ 1.  1.  0.  0.  0.  0.  0.  0.  1.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
111 [ 0.  0.  0.  1.  1.  1.  0.  0.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
112 [ 0.  0.  0.  1.  0.  1.  1.  0.  0.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
113 [ 1.  0.  1.  0.  0.  0.  0.  0.  1.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
114 [ 0.  0.  0.  1.  0.  1.  1.  0.  0.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
115 [ 0.  0.  1.  0.  0.  0.  1.  0.  1.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
116 [ 1.  0.  1.  0.  0.  1.  1.  0.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
117 [ 0.  0.  0.  1.  0.  1.  0.  0.  1.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
118 [ 1.  0.  1.  0.  1.  1.  0.  0.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
119 [ 0.  0.  1.  0.  0.  1.  0.  0.  1.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
120 [ 0.  0.  0.  1.  0.  1.  0.  1.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
121 [ 1.  0.  0.  0.  1.  1.  0.  1.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
122 [ 0.  0.  1.  0.  1.  0.  1.  0.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
123 [ 1.  1.  0.  0.  0.  0.  1.  0.  0.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
124 [ 1.  1.  0.  0.  1.  0.  0.  0.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
125 [ 1.  0.  0.  0.  1.  1.  0.  0.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
126 [ 0.  1.  0.  0.  0.  1.  1.  0.  0.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
127 [ 1.  0.  0.  1.  1.  0.  1.  0.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
128 [ 0.  0.  0.  0.  1.  1.  0.  0.  1.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
129 [ 1.  0.  1.  0.  0.  0.  1.  1.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
130 [ 0.  0.  1.  0.  0.  1.  1.  0.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
131 [ 1.  0.  1.  0.  0.  1.  1.  0.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
132 [ 0.  1.  0.  0.  1.  0.  0.  1.  0.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
133 [ 1.  1.  0.  0.  1.  1.  0.  0.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
134 [ 0.  1.  0.  0.  1.  0.  0.  1.  0.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
135 [ 1.  0.  0.  1.  1.  0.  0.  1.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
136 [ 0.  0.  0.  1.  1.  1.  0.  1.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
137 [ 0.  0.  0.  1.  1.  0.  1.  0.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
138 [ 0.  0.  0.  1.  1.  0.  1.  1.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
139 [ 0.  0.  0.  1.  0.  1.  0.  1.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
140 [ 0.  0.  0.  1.  1.  0.  0.  0.  1.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
141 [ 0.  0.  1.  1.  1.  0.  0.  0.  0.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
142 [ 1.  0.  0.  1.  0.  1.  0.  0.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
143 [ 1.  0.  0.  0.  1.  0.  1.  1.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
144 [ 1.  0.  1.  0.  0.  0.  1.  1.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
145 [ 0.  1.  0.  1.  1.  0.  0.  0.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
146 [ 1.  0.  1.  0.  0.  0.  1.  1.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
147 [ 1.  1.  0.  1.  1.  0.  0.  0.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
148 [ 0.  1.  0.  0.  0.  1.  0.  1.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
149 [ 0.  0.  0.  1.  0.  1.  0.  0.  1.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
150 [ 1.  0.  1.  1.  0.  0.  0.  0.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
151 [ 0.  0.  1.  0.  1.  0.  0.  1.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
152 [ 0.  1.  1.  1.  0.  0.  0.  0.  0.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
153 [ 1.  0.  1.  0.  0.  0.  1.  0.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
154 [ 1.  1.  0.  0.  1.  0.  1.  0.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
155 [ 0.  0.  1.  0.  0.  1.  0.  1.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
156 [ 1.  0.  0.  0.  1.  1.  0.  1.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
157 [ 0.  1.  0.  1.  0.  0.  0.  1.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
158 [ 0.  0.  1.  0.  0.  0.  0.  1.  1.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
159 [ 0.  1.  1.  0.  0.  0.  0.  0.  1.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
160 [ 1.  0.  1.  1.  0.  1.  0.  0.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
161 [ 1.  0.  0.  0.  0.  1.  1.  1.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
162 [ 0.  0.  0.  0.  1.  1.  1.  1.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
163 [ 0.  0.  1.  0.  1.  1.  0.  0.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
164 [ 1.  0.  0.  1.  0.  1.  1.  0.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
165 [ 0.  0.  0.  1.  1.  1.  0.  0.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
166 [ 0.  1.  0.  0.  0.  0.  0.  1.  1.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
167 [ 0.  1.  0.  1.  0.  0.  1.  0.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
168 [ 0.  1.  0.  0.  1.  0.  0.  1.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
169 [ 0.  0.  1.  0.  1.  0.  0.  1.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
170 [ 0.  1.  0.  1.  0.  0.  1.  0.  0.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
171 [ 1.  0.  1.  0.  1.  0.  0.  0.  0.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
172 [ 0.  1.  0.  0.  0.  1.  1.  1.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
173 [ 1.  1.  0.  1.  1.  0.  0.  0.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
174 [ 0.  0.  0.  1.  1.  1.  0.  0.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
175 [ 0.  0.  1.  0.  0.  1.  1.  0.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
176 [ 0.  0.  1.  1.  0.  1.  1.  0.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
177 [ 0.  0.  1.  0.  0.  0.  0.  1.  1.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
178 [ 1.  0.  0.  0.  1.  1.  0.  0.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
179 [ 1.  0.  1.  1.  0.  0.  1.  0.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
180 [ 1.  0.  1.  0.  0.  1.  0.  1.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
181 [ 1.  0.  0.  0.  0.  0.  0.  1.  1.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
182 [ 0.  1.  1.  0.  0.  0.  0.  1.  0.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
183 [ 1.  0.  0.  0.  0.  0.  0.  1.  1.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
184 [ 0.  1.  1.  1.  0.  0.  1.  0.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
185 [ 1.  1.  0.  1.  0.  0.  1.  0.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
186 [ 1.  1.  0.  1.  0.  0.  0.  0.  0.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
187 [ 0.  0.  1.  0.  1.  0.  0.  1.  0.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
188 [ 0.  0.  1.  0.  0.  0.  1.  0.  1.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
189 [ 1.  0.  0.  1.  0.  0.  1.  0.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
190 [ 1.  1.  0.  1.  0.  0.  0.  0.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
191 [ 0.  0.  1.  1.  0.  1.  1.  0.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
192 [ 1.  1.  0.  0.  0.  0.  0.  1.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
193 [ 1.  1.  0.  0.  1.  0.  0.  0.  0.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
194 [ 0.  1.  0.  1.  0.  1.  0.  1.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
195 [ 1.  1.  0.  0.  0.  0.  1.  0.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
196 [ 0.  1.  0.  0.  1.  1.  0.  0.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
197 [ 0.  1.  0.  1.  0.  0.  0.  1.  0.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
198 [ 0.  1.  0.  0.  0.  1.  0.  1.  0.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
199 [ 0.  1.  0.  0.  1.  0.  0.  0.  1.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
200 [ 0.  0.  0.  0.  1.  0.  1.  1.  0.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
201 [ 0.  1.  1.  0.  0.  1.  0.  1.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
202 [ 0.  1.  1.  0.  0.  0.  1.  0.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
203 [ 1.  1.  0.  1.  0.  0.  1.  0.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
204 [ 1.  0.  1.  0.  1.  0.  1.  0.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
205 [ 0.  0.  0.  0.  1.  0.  1.  0.  1.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
206 [ 0.  0.  1.  0.  0.  0.  1.  0.  1.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
207 [ 0.  1.  1.  1.  0.  1.  0.  0.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
208 [ 0.  1.  0.  1.  0.  1.  0.  1.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
209 [ 0.  0.  1.  0.  1.  0.  1.  0.  0.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
210 [ 0.  1.  0.  0.  0.  1.  0.  1.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
211 [ 1.  0.  0.  1.  0.  1.  0.  1.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
212 [ 1.  0.  1.  0.  0.  1.  0.  0.  0.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
213 [ 1.  1.  0.  1.  0.  0.  0.  1.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
214 [ 0.  0.  0.  0.  1.  0.  0.  1.  1.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
215 [ 0.  1.  0.  0.  0.  1.  1.  0.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
216 [ 0.  0.  0.  1.  1.  0.  0.  1.  0.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
217 [ 0.  0.  0.  0.  1.  1.  1.  0.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
218 [ 1.  1.  0.  0.  1.  0.  0.  0.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
219 [ 0.  1.  0.  0.  1.  1.  0.  0.  0.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
220 [ 1.  1.  0.  0.  0.  0.  1.  1.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
221 [ 1.  1.  0.  0.  0.  0.  1.  0.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
222 [ 0.  0.  1.  1.  0.  1.  0.  0.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
223 [ 1.  0.  0.  0.  0.  0.  1.  1.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
224 [ 1.  1.  0.  0.  1.  1.  0.  0.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
225 [ 0.  0.  0.  0.  1.  0.  1.  1.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
226 [ 1.  1.  0.  0.  0.  0.  1.  0.  0.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
227 [ 0.  0.  0.  0.  1.  1.  0.  0.  1.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
228 [ 0.  0.  1.  0.  0.  1.  1.  0.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
229 [ 1.  0.  0.  0.  0.  0.  0.  1.  1.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
230 [ 0.  1.  0.  0.  0.  0.  1.  0.  1.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
231 [ 1.  1.  0.  0.  0.  1.  0.  1.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
232 [ 1.  1.  1.  0.  1.  0.  0.  0.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
233 [ 0.  0.  1.  1.  0.  0.  1.  0.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
234 [ 1.  0.  1.  0.  0.  1.  0.  1.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
235 [ 0.  1.  0.  0.  1.  0.  1.  0.  0.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
236 [ 1.  0.  0.  0.  1.  0.  1.  0.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
237 [ 1.  0.  0.  0.  0.  0.  0.  1.  1.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
238 [ 0.  1.  0.  1.  1.  0.  0.  1.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
239 [ 0.  0.  0.  0.  0.  1.  0.  1.  1.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
240 [ 1.  0.  0.  1.  1.  0.  1.  0.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
241 [ 0.  1.  0.  1.  1.  0.  1.  0.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
242 [ 0.  0.  0.  1.  1.  0.  0.  1.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
243 [ 0.  1.  0.  1.  0.  0.  0.  0.  1.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
244 [ 0.  1.  0.  0.  0.  1.  1.  0.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
245 [ 0.  0.  0.  0.  1.  1.  1.  0.  0.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
246 [ 0.  0.  0.  0.  0.  0.  1.  1.  1.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
247 [ 0.  1.  0.  0.  0.  0.  1.  1.  0.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
248 [ 0.  1.  0.  0.  0.  0.  1.  0.  1.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
249 [ 1.  0.  1.  0.  0.  0.  1.  0.  0.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
250 [ 0.  1.  1.  0.  0.  0.  1.  0.  1.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
251 [ 0.  1.  1.  0.  1.  0.  1.  0.  0.  0.] 2 [ 0.  0.  1.  0.  0.  0.]
252 [ 1.  0.  0.  0.  1.  0.  0.  0.  1.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
253 [ 0.  0.  1.  0.  1.  0.  1.  0.  0.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
254 [ 1.  0.  0.  0.  0.  1.  0.  1.  0.  1.] 2 [ 0.  0.  1.  0.  0.  0.]
255 [ 1.  1.  0.  1.  1.  1.  0.  0.  0.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
256 [ 1.  0.  1.  1.  1.  0.  1.  1.  0.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
257 [ 0.  1.  1.  0.  1.  0.  1.  1.  0.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
258 [ 1.  1.  0.  0.  0.  0.  1.  1.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
259 [ 1.  1.  0.  0.  1.  1.  0.  1.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
260 [ 1.  0.  1.  0.  0.  1.  1.  1.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
261 [ 0.  0.  1.  1.  1.  1.  1.  0.  0.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
262 [ 1.  1.  1.  1.  1.  0.  0.  0.  0.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
263 [ 1.  0.  0.  1.  1.  1.  1.  0.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
264 [ 1.  0.  0.  1.  1.  1.  0.  1.  0.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
265 [ 0.  1.  1.  1.  0.  1.  0.  0.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
266 [ 0.  1.  0.  1.  1.  0.  1.  0.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
267 [ 0.  1.  1.  1.  0.  1.  1.  0.  0.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
268 [ 1.  1.  0.  0.  0.  1.  1.  0.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
269 [ 1.  1.  1.  1.  0.  0.  0.  1.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
270 [ 1.  0.  1.  1.  0.  1.  1.  0.  0.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
271 [ 1.  0.  1.  0.  0.  1.  1.  0.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
272 [ 1.  1.  1.  1.  0.  1.  0.  0.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
273 [ 1.  1.  1.  0.  0.  1.  0.  0.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
274 [ 1.  1.  0.  0.  1.  1.  1.  0.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
275 [ 0.  1.  0.  0.  1.  1.  0.  1.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
276 [ 1.  1.  1.  1.  1.  0.  1.  0.  0.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
277 [ 1.  1.  0.  1.  1.  0.  1.  0.  0.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
278 [ 1.  1.  0.  1.  0.  1.  0.  1.  0.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
279 [ 1.  1.  1.  0.  1.  1.  0.  0.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
280 [ 1.  1.  0.  0.  1.  1.  0.  1.  0.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
281 [ 0.  0.  1.  0.  0.  1.  1.  1.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
282 [ 1.  0.  0.  1.  1.  0.  1.  0.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
283 [ 0.  0.  1.  0.  1.  1.  1.  1.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
284 [ 0.  1.  0.  1.  0.  1.  1.  1.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
285 [ 0.  1.  0.  1.  1.  1.  0.  1.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
286 [ 0.  1.  0.  1.  1.  1.  1.  1.  0.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
287 [ 0.  0.  1.  1.  0.  1.  1.  0.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
288 [ 1.  1.  0.  0.  1.  0.  1.  0.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
289 [ 1.  0.  1.  0.  0.  1.  1.  1.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
290 [ 0.  1.  1.  0.  1.  1.  0.  1.  0.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
291 [ 0.  1.  0.  1.  1.  0.  1.  1.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
292 [ 1.  1.  0.  0.  0.  1.  1.  0.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
293 [ 0.  0.  1.  0.  1.  1.  1.  1.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
294 [ 0.  1.  0.  1.  1.  0.  1.  1.  0.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
295 [ 1.  0.  1.  0.  1.  0.  1.  1.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
296 [ 1.  1.  1.  0.  0.  0.  1.  0.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
297 [ 0.  0.  1.  0.  1.  1.  1.  0.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
298 [ 1.  1.  0.  1.  0.  0.  1.  1.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
299 [ 1.  0.  0.  1.  1.  0.  1.  1.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
300 [ 1.  1.  1.  0.  1.  0.  0.  1.  0.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
301 [ 0.  1.  1.  1.  1.  0.  0.  1.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
302 [ 0.  1.  1.  1.  1.  0.  1.  0.  0.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
303 [ 0.  1.  0.  1.  1.  1.  1.  0.  0.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
304 [ 1.  1.  0.  0.  0.  1.  1.  1.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
305 [ 1.  0.  1.  0.  1.  0.  1.  1.  0.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
306 [ 1.  1.  0.  0.  0.  1.  0.  1.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
307 [ 1.  1.  1.  1.  0.  1.  0.  0.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
308 [ 1.  1.  0.  0.  1.  1.  1.  1.  0.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
309 [ 1.  0.  0.  1.  1.  1.  0.  1.  0.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
310 [ 1.  0.  1.  1.  0.  1.  1.  0.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
311 [ 1.  0.  1.  1.  1.  1.  0.  1.  0.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
312 [ 1.  0.  1.  0.  0.  1.  1.  0.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
313 [ 0.  0.  1.  1.  1.  1.  0.  0.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
314 [ 1.  1.  0.  0.  0.  1.  0.  1.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
315 [ 0.  1.  0.  0.  1.  1.  1.  1.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
316 [ 1.  1.  0.  1.  1.  0.  0.  0.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
317 [ 1.  1.  1.  0.  1.  1.  0.  0.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
318 [ 0.  1.  1.  0.  0.  0.  1.  1.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
319 [ 0.  0.  1.  1.  1.  1.  0.  1.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
320 [ 1.  1.  0.  0.  1.  0.  0.  1.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
321 [ 0.  0.  1.  0.  0.  1.  1.  1.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
322 [ 1.  1.  1.  1.  0.  0.  1.  0.  0.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
323 [ 0.  1.  1.  0.  0.  1.  1.  1.  0.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
324 [ 1.  1.  0.  0.  0.  1.  0.  1.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
325 [ 0.  0.  1.  0.  1.  1.  1.  0.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
326 [ 0.  0.  1.  1.  1.  0.  1.  1.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
327 [ 0.  1.  1.  1.  0.  0.  1.  1.  0.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
328 [ 1.  1.  0.  1.  0.  0.  0.  1.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
329 [ 1.  1.  0.  0.  1.  1.  0.  1.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
330 [ 1.  0.  0.  1.  1.  1.  1.  0.  0.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
331 [ 0.  1.  1.  0.  1.  1.  1.  1.  0.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
332 [ 1.  0.  0.  1.  1.  1.  1.  1.  0.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
333 [ 1.  1.  0.  0.  1.  1.  0.  0.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
334 [ 1.  0.  1.  1.  1.  1.  0.  0.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
335 [ 0.  1.  0.  1.  1.  1.  1.  0.  0.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
336 [ 0.  0.  1.  1.  0.  1.  0.  1.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
337 [ 1.  1.  1.  1.  0.  1.  0.  1.  0.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
338 [ 1.  1.  0.  1.  1.  0.  1.  1.  0.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
339 [ 0.  0.  0.  1.  1.  1.  1.  0.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
340 [ 1.  0.  1.  1.  0.  0.  1.  1.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
341 [ 0.  1.  1.  1.  0.  1.  1.  0.  0.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
342 [ 1.  0.  1.  0.  1.  1.  1.  1.  0.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
343 [ 1.  1.  1.  0.  0.  1.  0.  0.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
344 [ 0.  0.  0.  1.  1.  1.  0.  1.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
345 [ 0.  0.  0.  1.  1.  1.  0.  1.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
346 [ 1.  1.  0.  1.  1.  1.  0.  0.  0.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
347 [ 1.  0.  0.  1.  0.  1.  1.  1.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
348 [ 1.  0.  1.  0.  1.  0.  1.  1.  0.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
349 [ 1.  1.  1.  1.  0.  0.  1.  0.  0.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
350 [ 0.  0.  1.  0.  1.  0.  1.  1.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
351 [ 1.  0.  1.  1.  1.  0.  1.  0.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
352 [ 1.  0.  0.  0.  1.  0.  1.  1.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
353 [ 1.  0.  1.  0.  0.  1.  1.  0.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
354 [ 1.  0.  1.  1.  1.  1.  1.  0.  0.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
355 [ 1.  1.  0.  0.  1.  1.  1.  1.  0.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
356 [ 0.  1.  0.  1.  1.  1.  1.  0.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
357 [ 1.  1.  1.  0.  0.  0.  1.  0.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
358 [ 0.  0.  0.  1.  1.  1.  1.  1.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
359 [ 0.  0.  1.  1.  0.  1.  1.  0.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
360 [ 0.  0.  1.  1.  1.  1.  1.  0.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
361 [ 1.  1.  1.  0.  0.  1.  0.  1.  0.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
362 [ 1.  1.  0.  0.  1.  1.  0.  0.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
363 [ 1.  0.  1.  0.  0.  1.  1.  0.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
364 [ 0.  1.  1.  1.  1.  1.  0.  0.  0.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
365 [ 1.  1.  0.  1.  1.  0.  0.  0.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
366 [ 1.  1.  0.  0.  1.  1.  0.  1.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
367 [ 1.  0.  1.  1.  1.  1.  0.  0.  0.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
368 [ 0.  0.  1.  1.  1.  0.  1.  1.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
369 [ 1.  1.  1.  1.  0.  1.  0.  1.  0.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
370 [ 0.  1.  1.  0.  1.  1.  0.  1.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
371 [ 0.  0.  1.  1.  0.  1.  1.  1.  0.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
372 [ 1.  1.  1.  1.  1.  0.  0.  0.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
373 [ 1.  1.  1.  1.  1.  0.  0.  0.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
374 [ 0.  1.  1.  1.  0.  0.  0.  1.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
375 [ 1.  0.  0.  1.  1.  1.  0.  0.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
376 [ 0.  1.  0.  1.  0.  1.  1.  1.  0.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
377 [ 1.  0.  1.  0.  0.  1.  0.  1.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
378 [ 0.  0.  0.  1.  1.  1.  1.  1.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
379 [ 0.  1.  0.  1.  0.  0.  1.  1.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
380 [ 1.  0.  1.  0.  1.  1.  0.  0.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
381 [ 1.  1.  0.  1.  0.  0.  0.  1.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
382 [ 1.  1.  0.  1.  0.  1.  1.  0.  0.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
383 [ 1.  1.  1.  0.  0.  1.  0.  1.  0.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
384 [ 0.  1.  1.  1.  0.  0.  1.  0.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
385 [ 1.  1.  1.  0.  0.  0.  1.  1.  0.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
386 [ 1.  1.  0.  1.  0.  0.  0.  1.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
387 [ 1.  0.  0.  1.  0.  1.  1.  1.  0.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
388 [ 0.  0.  0.  1.  1.  1.  1.  0.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
389 [ 1.  0.  1.  1.  1.  0.  0.  1.  0.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
390 [ 1.  0.  0.  1.  0.  1.  1.  0.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
391 [ 1.  0.  1.  1.  1.  1.  0.  0.  0.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
392 [ 1.  1.  0.  1.  0.  1.  1.  0.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
393 [ 1.  1.  1.  1.  0.  0.  0.  1.  0.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
394 [ 1.  1.  0.  0.  0.  1.  1.  1.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
395 [ 1.  1.  0.  0.  1.  1.  1.  0.  0.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
396 [ 0.  1.  1.  0.  1.  0.  1.  1.  0.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
397 [ 1.  1.  1.  1.  0.  1.  0.  0.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
398 [ 0.  1.  1.  0.  1.  1.  1.  0.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
399 [ 0.  1.  0.  1.  1.  1.  0.  0.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
400 [ 0.  1.  0.  0.  1.  0.  1.  1.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
401 [ 1.  1.  1.  0.  1.  0.  1.  1.  0.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
402 [ 1.  1.  0.  0.  0.  1.  1.  0.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
403 [ 0.  1.  0.  0.  1.  0.  1.  1.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
404 [ 0.  1.  0.  1.  1.  0.  1.  1.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
405 [ 0.  1.  1.  1.  1.  0.  1.  0.  0.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
406 [ 1.  1.  0.  1.  1.  1.  0.  1.  0.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
407 [ 1.  1.  0.  0.  1.  0.  1.  0.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
408 [ 1.  1.  0.  1.  1.  1.  1.  0.  0.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
409 [ 1.  1.  1.  1.  1.  0.  0.  1.  0.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
410 [ 0.  1.  1.  0.  1.  0.  0.  1.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
411 [ 1.  0.  0.  1.  1.  1.  1.  1.  0.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
412 [ 0.  1.  1.  1.  0.  1.  0.  1.  0.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
413 [ 1.  0.  0.  0.  1.  0.  1.  1.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
414 [ 1.  1.  0.  1.  1.  1.  1.  0.  0.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
415 [ 1.  1.  1.  0.  0.  0.  0.  1.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
416 [ 0.  1.  1.  1.  1.  0.  1.  0.  0.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
417 [ 1.  0.  0.  1.  1.  1.  0.  1.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
418 [ 1.  1.  1.  1.  0.  0.  1.  0.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
419 [ 0.  0.  0.  1.  1.  1.  1.  1.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
420 [ 0.  0.  1.  1.  1.  1.  1.  0.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
421 [ 1.  1.  1.  0.  1.  0.  0.  1.  0.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
422 [ 0.  1.  1.  1.  0.  0.  0.  1.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
423 [ 0.  1.  1.  1.  1.  0.  1.  0.  0.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
424 [ 1.  1.  1.  0.  0.  1.  1.  0.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
425 [ 1.  1.  1.  0.  1.  1.  0.  0.  0.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
426 [ 0.  0.  1.  1.  1.  1.  1.  0.  0.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
427 [ 1.  1.  1.  1.  0.  1.  0.  1.  0.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
428 [ 0.  0.  1.  1.  0.  1.  1.  0.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
429 [ 1.  1.  0.  1.  0.  1.  1.  0.  0.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
430 [ 1.  1.  0.  1.  1.  0.  0.  1.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
431 [ 1.  1.  1.  0.  0.  0.  1.  1.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
432 [ 0.  1.  1.  0.  0.  1.  1.  1.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
433 [ 0.  1.  0.  1.  1.  1.  1.  0.  0.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
434 [ 1.  0.  0.  1.  1.  0.  1.  1.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
435 [ 1.  0.  0.  0.  1.  1.  0.  1.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
436 [ 0.  1.  1.  0.  1.  1.  1.  0.  0.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
437 [ 0.  1.  1.  0.  1.  1.  0.  1.  0.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
438 [ 1.  0.  1.  1.  1.  1.  0.  0.  0.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
439 [ 1.  1.  0.  1.  1.  0.  1.  1.  0.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
440 [ 0.  1.  1.  0.  1.  1.  1.  1.  0.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
441 [ 0.  0.  1.  0.  1.  1.  0.  1.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
442 [ 1.  0.  1.  1.  0.  1.  1.  0.  0.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
443 [ 1.  1.  0.  1.  1.  1.  0.  1.  0.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
444 [ 0.  0.  1.  0.  1.  0.  1.  1.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
445 [ 0.  1.  1.  0.  0.  1.  1.  1.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
446 [ 1.  1.  0.  1.  0.  0.  0.  1.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
447 [ 0.  1.  0.  1.  0.  1.  0.  1.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
448 [ 1.  1.  1.  1.  1.  0.  0.  0.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
449 [ 1.  0.  1.  0.  1.  1.  1.  0.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
450 [ 1.  1.  0.  1.  0.  1.  1.  0.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
451 [ 0.  1.  1.  0.  1.  0.  1.  0.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
452 [ 0.  0.  1.  1.  1.  0.  1.  1.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
453 [ 0.  1.  0.  1.  0.  1.  1.  0.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
454 [ 0.  0.  1.  1.  0.  1.  0.  1.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
455 [ 1.  1.  1.  1.  1.  0.  0.  1.  0.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
456 [ 1.  1.  1.  0.  0.  1.  0.  1.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
457 [ 1.  0.  1.  0.  0.  1.  1.  1.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
458 [ 0.  1.  0.  1.  1.  1.  1.  0.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
459 [ 1.  1.  1.  1.  1.  0.  0.  1.  0.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
460 [ 0.  1.  0.  1.  1.  0.  1.  1.  1.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
461 [ 1.  1.  1.  0.  1.  0.  1.  1.  0.  0.] 3 [ 0.  0.  0.  1.  0.  0.]
462 [ 0.  1.  1.  1.  1.  0.  0.  0.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
463 [ 0.  0.  1.  0.  1.  0.  1.  1.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
464 [ 1.  0.  1.  1.  0.  1.  0.  0.  1.  1.] 3 [ 0.  0.  0.  1.  0.  0.]
465 [ 1.  1.  1.  1.  1.  1.  1.  1.  0.  0.] 4 [ 0.  0.  0.  0.  1.  0.]
466 [ 1.  1.  1.  0.  1.  1.  1.  1.  1.  0.] 4 [ 0.  0.  0.  0.  1.  0.]
467 [ 0.  1.  1.  1.  1.  0.  1.  1.  1.  1.] 4 [ 0.  0.  0.  0.  1.  0.]
468 [ 0.  1.  1.  1.  1.  1.  1.  0.  1.  1.] 4 [ 0.  0.  0.  0.  1.  0.]
469 [ 0.  1.  1.  1.  1.  1.  1.  1.  1.  0.] 4 [ 0.  0.  0.  0.  1.  0.]
470 [ 0.  1.  1.  1.  1.  1.  1.  1.  0.  1.] 4 [ 0.  0.  0.  0.  1.  0.]
471 [ 1.  1.  0.  1.  1.  1.  1.  0.  1.  1.] 4 [ 0.  0.  0.  0.  1.  0.]
472 [ 1.  1.  1.  1.  1.  1.  1.  1.  0.  0.] 4 [ 0.  0.  0.  0.  1.  0.]
473 [ 0.  1.  1.  1.  1.  1.  1.  1.  0.  1.] 4 [ 0.  0.  0.  0.  1.  0.]
474 [ 1.  0.  1.  1.  1.  1.  1.  0.  1.  1.] 4 [ 0.  0.  0.  0.  1.  0.]
475 [ 0.  1.  1.  0.  1.  1.  1.  1.  1.  1.] 4 [ 0.  0.  0.  0.  1.  0.]
476 [ 1.  1.  1.  1.  1.  1.  0.  1.  1.  0.] 4 [ 0.  0.  0.  0.  1.  0.]
477 [ 0.  1.  1.  1.  1.  1.  1.  1.  0.  1.] 4 [ 0.  0.  0.  0.  1.  0.]
478 [ 0.  1.  1.  1.  1.  1.  1.  0.  1.  1.] 4 [ 0.  0.  0.  0.  1.  0.]
479 [ 1.  1.  0.  1.  1.  1.  0.  1.  1.  1.] 4 [ 0.  0.  0.  0.  1.  0.]
480 [ 1.  1.  1.  1.  1.  0.  1.  1.  1.  0.] 4 [ 0.  0.  0.  0.  1.  0.]
481 [ 0.  1.  1.  1.  1.  1.  0.  1.  1.  1.] 4 [ 0.  0.  0.  0.  1.  0.]
482 [ 1.  0.  1.  1.  1.  1.  1.  1.  1.  0.] 4 [ 0.  0.  0.  0.  1.  0.]
483 [ 0.  1.  1.  0.  1.  1.  1.  1.  1.  1.] 4 [ 0.  0.  0.  0.  1.  0.]
484 [ 0.  1.  0.  1.  1.  1.  1.  1.  1.  1.] 4 [ 0.  0.  0.  0.  1.  0.]
485 [ 1.  1.  1.  1.  1.  1.  0.  1.  0.  1.] 4 [ 0.  0.  0.  0.  1.  0.]
486 [ 0.  1.  1.  1.  1.  1.  0.  1.  1.  1.] 4 [ 0.  0.  0.  0.  1.  0.]
487 [ 0.  1.  1.  1.  1.  1.  1.  0.  1.  1.] 4 [ 0.  0.  0.  0.  1.  0.]
488 [ 1.  1.  0.  1.  1.  1.  0.  1.  1.  1.] 4 [ 0.  0.  0.  0.  1.  0.]
489 [ 1.  1.  1.  1.  0.  1.  0.  1.  1.  1.] 4 [ 0.  0.  0.  0.  1.  0.]
490 [ 0.  1.  1.  1.  1.  1.  1.  0.  1.  1.] 4 [ 0.  0.  0.  0.  1.  0.]
491 [ 1.  1.  1.  1.  0.  0.  1.  1.  1.  1.] 4 [ 0.  0.  0.  0.  1.  0.]
492 [ 1.  1.  1.  1.  1.  0.  1.  0.  1.  1.] 4 [ 0.  0.  0.  0.  1.  0.]
493 [ 1.  0.  1.  1.  0.  1.  1.  1.  1.  1.] 4 [ 0.  0.  0.  0.  1.  0.]
494 [ 1.  1.  1.  1.  1.  1.  0.  0.  1.  1.] 4 [ 0.  0.  0.  0.  1.  0.]
495 [ 1.  1.  1.  1.  1.  0.  0.  1.  1.  1.] 4 [ 0.  0.  0.  0.  1.  0.]
496 [ 1.  1.  1.  1.  1.  1.  1.  0.  0.  1.] 4 [ 0.  0.  0.  0.  1.  0.]
497 [ 1.  0.  1.  1.  1.  0.  1.  1.  1.  1.] 4 [ 0.  0.  0.  0.  1.  0.]
498 [ 1.  1.  1.  0.  1.  1.  0.  1.  1.  1.] 4 [ 0.  0.  0.  0.  1.  0.]
499 [ 1.  1.  1.  0.  0.  1.  1.  1.  1.  1.] 4 [ 0.  0.  0.  0.  1.  0.]
500 [ 0.  1.  1.  1.  1.  1.  1.  0.  1.  1.] 4 [ 0.  0.  0.  0.  1.  0.]
501 [ 1.  0.  0.  1.  1.  1.  1.  1.  1.  1.] 4 [ 0.  0.  0.  0.  1.  0.]
502 [ 1.  1.  0.  1.  1.  0.  1.  1.  1.  1.] 4 [ 0.  0.  0.  0.  1.  0.]
503 [ 1.  1.  1.  1.  1.  0.  0.  1.  1.  1.] 4 [ 0.  0.  0.  0.  1.  0.]
504 [ 1.  1.  0.  1.  1.  1.  1.  1.  1.  0.] 4 [ 0.  0.  0.  0.  1.  0.]
505 [ 1.  1.  1.  0.  1.  1.  1.  1.  0.  1.] 4 [ 0.  0.  0.  0.  1.  0.]
506 [ 0.  1.  1.  1.  1.  1.  0.  1.  1.  1.] 4 [ 0.  0.  0.  0.  1.  0.]
507 [ 1.  1.  0.  0.  1.  1.  1.  1.  1.  1.] 4 [ 0.  0.  0.  0.  1.  0.]
508 [ 1.  1.  1.  1.  0.  1.  1.  1.  1.  0.] 4 [ 0.  0.  0.  0.  1.  0.]
509 [ 1.  1.  1.  0.  1.  0.  1.  1.  1.  1.] 4 [ 0.  0.  0.  0.  1.  0.]
510 [ 1.  1.  1.  1.  1.  1.  1.  1.  1.  1.] 5 [ 0.  0.  0.  0.  0.  1.]

Accumulator inputs - Verguts& Fias

Numerosity from 1 to 5, where unity is represented by 3 repeated ones. (e.g. 2 is represented as [1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]). No zero vector.


In [12]:
inputs =  accumulatorMatrix(5, times=2).outputs 
labels = find_labels(inputs, multiple=2, one_hot=True)

Dataset = namedtuple('Dataset', ['data', 'labels'])
verguts2004 = Dataset(inputs, labels)
pickle_test(verguts2004, "verguts_accumulator")

In [98]:
verguts2004.labels


Out[98]:
array([[ 0.,  1.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  1.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  1.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  1.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  1.]])

In [ ]: