In [1]:
import pandas as pd
import numpy as np
import tensorflow as tf
from sklearn.cross_validation import train_test_split
import xgboost as xgb
from scipy import sparse
from sklearn.feature_extraction import FeatureHasher
from scipy.sparse import coo_matrix,csr_matrix,csc_matrix, hstack
from sklearn.preprocessing import normalize
from sklearn.utils import shuffle
from sklearn import linear_model
import gc
from sklearn import preprocessing

In [3]:
%ls


1_predata.ipynb                   submission_10_new.csv
3_prediction.ipynb                submission_11.csv
44fea_bst.model                   submission_11_new.csv
4_keras_nn.ipynb                  submission_nn_2.csv
5_random_forest.ipynb             submission_nn.csv
6_random_forest.ipynb             submission_nn_xgb
agencia_for_cliente_producto.csv  submission_xgb_10.pickle
agen_freq_semana.pickle           submission_xgb_2.csv
canal_for_cliente_producto.csv    submission_xgb.csv
clien_freq_semana.pickle          submission_xgb_nn_10.pickle
model_nn_10_after_l2reg.h5        submission_xgb_with_nn.csv
model_nn_10.h5                    train_pivot_3456_to_8.csv
model_nn_10_whole.h5              train_pivot_45678_to_9_new.csv
origin/                           train_pivot_56789_to_10_44fea.pickle
pivot_test.pickle                 train_pivot_56789_to_10_new.pickle
pivot_train_with_nan.pickle       train_pivot_56789_to_10.pickle
pivot_train_with_zero.pickle      train_pivot_6789_to_11_new.pickle
preprocessed_products.csv         train_pivot_6789_to_11.pickle
prod_freq_semana.pickle           train_pivot_xgb_time1_44fea.csv
ruta_for_cliente_producto.csv     train_pivot_xgb_time1.csv
ruta_freq_semana.pickle           train_pivot_xgb_time2_38fea.csv
stack_train_nn_10.pickle          train_pivot_xgb_time2.csv
submission_10.csv

begin training, for week 11



In [18]:
predictors_target_11 = ['LR_prod', 'LR_prod_corr',
       'NombreCliente',
       'agen_cliente_for_log_de', 'agen_for_log_de',
       'agen_producto_for_log_de', 'agen_ruta_for_log_de',
       'cliente_for_log_de', 'cliente_for_log_sum',
       'cliente_producto_for_log_de', 'corr', 'pieces',
       'producto_for_log_de', 'ruta_cliente_for_log_de', 'ruta_for_log_de',
       'ruta_producto_for_log_de', 't2_min_t3', 't2_min_t4', 't2_min_t5',
       't3_min_t4', 't3_min_t5', 't4_min_t5', 't_m_2_cum', 't_m_3_cum',
       't_m_4_cum', 't_m_5_cum', 't_min_2', 't_min_3', 't_min_4',
       't_min_5', 'target', 'weight', 'weight_per_piece']

In [19]:
predictors_11 = ['LR_prod', 'LR_prod_corr',
       'NombreCliente',
       'agen_cliente_for_log_de', 'agen_for_log_de',
       'agen_producto_for_log_de', 'agen_ruta_for_log_de',
       'cliente_for_log_de', 'cliente_for_log_sum',
       'cliente_producto_for_log_de', 'corr', 'pieces',
       'producto_for_log_de', 'ruta_cliente_for_log_de', 'ruta_for_log_de',
       'ruta_producto_for_log_de', 't2_min_t3', 't2_min_t4', 't2_min_t5',
       't3_min_t4', 't3_min_t5', 't4_min_t5', 't_m_2_cum', 't_m_3_cum',
       't_m_4_cum', 't_m_5_cum', 't_min_2', 't_min_3', 't_min_4',
       't_min_5', 'weight', 'weight_per_piece']

In [10]:
f = lambda x : (x-x.mean())/x.std(ddof=0)

In [14]:
train_pivot_xgb_time2 = pd.read_csv('train_pivot_xgb_time2.csv',index_col = 0)

In [7]:
train_pivot_6789_to_11 = pd.read_pickle('train_pivot_6789_to_11_new.pickle')

In [8]:
train_pivot_xgb_time2.head()


Out[8]:
Agencia_ID Canal_ID Cliente_ID LR_prod LR_prod_corr NombreCliente Producto_ID Ruta_SAK agen_cliente_for_log_de agen_for_log_de ... t_m_3_cum t_m_4_cum t_m_5_cum t_min_2 t_min_3 t_min_4 t_min_5 target weight weight_per_piece
0 2061 2 26 2.001190 7.293554 18434 1182 7212 2.852285 3.491654 ... NaN NaN 3.688879 NaN NaN NaN 3.688879 0.000000 210.0 210.00
1 2061 2 26 1.839411 6.703932 18434 4767 7212 2.852285 3.491654 ... NaN NaN 3.761200 NaN NaN NaN 3.761200 3.761200 250.0 NaN
2 2061 2 26 1.911283 6.965878 18434 31393 7212 2.852285 3.491654 ... 8.650325 5.877736 3.044522 2.772589 2.772589 2.833213 3.044522 3.135494 640.0 NaN
3 2061 2 26 3.113374 11.347029 18434 34204 7212 2.852285 3.491654 ... 11.024839 7.218177 3.784190 3.555348 3.806662 3.433987 3.784190 3.828641 450.0 56.25
4 2061 2 26 2.031231 7.403043 18434 34206 7212 2.852285 3.491654 ... 12.963710 9.202510 4.795791 4.248495 3.761200 4.406719 4.795791 4.499810 340.0 42.50

5 rows × 38 columns


In [15]:
train_pivot_xgb_time2.columns.values


Out[15]:
array(['Agencia_ID', 'Canal_ID', 'Cliente_ID', 'LR_prod', 'LR_prod_corr',
       'NombreCliente', 'Producto_ID', 'Ruta_SAK',
       'agen_cliente_for_log_de', 'agen_for_log_de',
       'agen_producto_for_log_de', 'agen_ruta_for_log_de',
       'cliente_for_log_de', 'cliente_for_log_sum',
       'cliente_producto_for_log_de', 'corr', 'pieces',
       'producto_for_log_de', 'ruta_cliente_for_log_de', 'ruta_for_log_de',
       'ruta_producto_for_log_de', 't2_min_t3', 't2_min_t4', 't2_min_t5',
       't3_min_t4', 't3_min_t5', 't4_min_t5', 't_m_2_cum', 't_m_3_cum',
       't_m_4_cum', 't_m_5_cum', 't_min_2', 't_min_3', 't_min_4',
       't_min_5', 'target', 'weight', 'weight_per_piece'], dtype=object)

In [4]:
def normalize_dataset(train_dataset,test_dataset):
    train_dataset_normalize = train_dataset[predictors_11].copy()
    train_dataset_normalize['label'] = 0    
    
    test_dataset_normalize = test_dataset[predictors_11].copy()
    test_dataset_normalize['label'] = 1
    
    whole_dataset = pd.concat([train_dataset_normalize,test_dataset_normalize])
    whole_dataset_normalize = whole_dataset.apply(f,axis = 0)
    
    train_dataset_normalize = whole_dataset_normalize.loc[whole_dataset['label'] == 0]
    test_dataset_normalize = whole_dataset_normalize.loc[whole_dataset['label']==1]
    
    train_dataset_normalize.drop(['label'],axis = 1,inplace = True)
    test_dataset_normalize.drop(['label'],axis =1,inplace = True)
    
    train_dataset_normalize['target'] = train_dataset['target'].copy() 
    
#     target = train_dataset['target']
    return train_dataset_normalize,test_dataset_normalize

In [21]:
train_dataset_normalize, test_dataset_normalize = normalize_dataset(train_pivot_xgb_time2,train_pivot_6789_to_11)


/usr/local/lib/python2.7/dist-packages/ipykernel/__main__.py:14: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
/usr/local/lib/python2.7/dist-packages/ipykernel/__main__.py:15: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
/usr/local/lib/python2.7/dist-packages/ipykernel/__main__.py:17: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

In [22]:
train_dataset_normalize.head()


Out[22]:
Semana LR_prod LR_prod_corr NombreCliente agen_cliente_for_log_de agen_for_log_de agen_producto_for_log_de agen_ruta_for_log_de cliente_for_log_de cliente_for_log_sum cliente_producto_for_log_de ... t_m_3_cum t_m_4_cum t_m_5_cum t_min_2 t_min_3 t_min_4 t_min_5 weight weight_per_piece target
0 0.440004 0.007984 -1.198863 2.893915 7.040262 4.922515 3.707101 2.951726 0.023732 2.468511 ... NaN NaN 0.841755 NaN NaN NaN 2.148223 0.041948 0.552880 0.000000
1 0.136858 0.004843 -1.198863 2.893915 7.040262 4.561988 3.707101 2.951726 0.023732 2.558317 ... NaN NaN 0.888582 NaN NaN NaN 2.230611 0.180385 NaN 3.761200
2 0.271533 0.006239 -1.198863 2.893915 7.040262 3.000979 3.707101 2.951726 0.023732 1.433925 ... 1.028141 0.851082 0.424536 1.090852 1.086921 1.149949 1.414172 1.530144 NaN 3.135494
3 2.524041 0.029578 -1.198863 2.893915 7.040262 3.917930 3.707101 2.951726 0.023732 2.414081 ... 1.752516 1.424506 0.903467 1.968861 2.245187 1.825675 2.256800 0.872569 -0.290791 3.828641
4 0.496296 0.008568 -1.198863 2.893915 7.040262 5.719378 3.707101 2.951726 0.023732 3.231175 ... 2.343992 2.273380 1.558475 2.746354 2.194265 2.919764 3.409216 0.491868 -0.366242 4.499810

5 rows × 33 columns


In [26]:
train_pivot_xgb_time2_sample = train_dataset_normalize.sample(2000000)

train_feature_11 = train_pivot_xgb_time2_sample.drop(['target'],axis = 1)
train_label_11 = train_pivot_xgb_time2_sample[['target']]

dtrain_11 = xgb.DMatrix(train_feature_11,label = train_label_11,missing=np.nan)

In [27]:
num_round = 1000

cvresult = xgb.cv(param_11, dtrain_11, num_round, nfold=5,verbose_eval = 1,show_stdv=False,
                        seed = 0, early_stopping_rounds=5)
print(cvresult.tail())


[0]	train-rmse:1.14019	test-rmse:1.14021
[1]	train-rmse:0.961458	test-rmse:0.961473
[2]	train-rmse:0.824843	test-rmse:0.824873
[3]	train-rmse:0.722328	test-rmse:0.722397
[4]	train-rmse:0.647489	test-rmse:0.647603
[5]	train-rmse:0.592862	test-rmse:0.593041
[6]	train-rmse:0.555021	test-rmse:0.555254
[7]	train-rmse:0.528662	test-rmse:0.528924
[8]	train-rmse:0.510662	test-rmse:0.510977
[9]	train-rmse:0.498551	test-rmse:0.498903
[10]	train-rmse:0.49003	test-rmse:0.490423
[11]	train-rmse:0.484163	test-rmse:0.484588
[12]	train-rmse:0.480003	test-rmse:0.480457
[13]	train-rmse:0.477039	test-rmse:0.47752
[14]	train-rmse:0.474897	test-rmse:0.475405
[15]	train-rmse:0.473305	test-rmse:0.473844
[16]	train-rmse:0.472061	test-rmse:0.472641
[17]	train-rmse:0.471142	test-rmse:0.471752
[18]	train-rmse:0.470369	test-rmse:0.471
[19]	train-rmse:0.469729	test-rmse:0.470375
[20]	train-rmse:0.469123	test-rmse:0.469783
[21]	train-rmse:0.468683	test-rmse:0.469369
[22]	train-rmse:0.468239	test-rmse:0.468944
[23]	train-rmse:0.467862	test-rmse:0.468596
[24]	train-rmse:0.467516	test-rmse:0.468284
[25]	train-rmse:0.467183	test-rmse:0.467968
[26]	train-rmse:0.46683	test-rmse:0.467642
[27]	train-rmse:0.466558	test-rmse:0.467384
[28]	train-rmse:0.466233	test-rmse:0.467087
[29]	train-rmse:0.465967	test-rmse:0.46684
[30]	train-rmse:0.46573	test-rmse:0.466622
[31]	train-rmse:0.465487	test-rmse:0.466401
[32]	train-rmse:0.465309	test-rmse:0.466247
[33]	train-rmse:0.465145	test-rmse:0.466103
[34]	train-rmse:0.464955	test-rmse:0.465931
[35]	train-rmse:0.464779	test-rmse:0.465778
[36]	train-rmse:0.464622	test-rmse:0.465647
[37]	train-rmse:0.46445	test-rmse:0.465496
[38]	train-rmse:0.464265	test-rmse:0.465335
[39]	train-rmse:0.464089	test-rmse:0.46519
[40]	train-rmse:0.463953	test-rmse:0.465087
[41]	train-rmse:0.463803	test-rmse:0.464965
[42]	train-rmse:0.463669	test-rmse:0.46485
[43]	train-rmse:0.463526	test-rmse:0.46473
[44]	train-rmse:0.463345	test-rmse:0.46458
[45]	train-rmse:0.46323	test-rmse:0.464488
[46]	train-rmse:0.463083	test-rmse:0.46436
[47]	train-rmse:0.462961	test-rmse:0.464254
[48]	train-rmse:0.462844	test-rmse:0.464164
[49]	train-rmse:0.462671	test-rmse:0.464006
[50]	train-rmse:0.462573	test-rmse:0.463937
[51]	train-rmse:0.462433	test-rmse:0.463811
[52]	train-rmse:0.462326	test-rmse:0.463717
[53]	train-rmse:0.462213	test-rmse:0.46363
[54]	train-rmse:0.462113	test-rmse:0.463553
[55]	train-rmse:0.462006	test-rmse:0.463481
[56]	train-rmse:0.461917	test-rmse:0.463415
[57]	train-rmse:0.461803	test-rmse:0.463323
[58]	train-rmse:0.461723	test-rmse:0.463264
[59]	train-rmse:0.461629	test-rmse:0.463187
[60]	train-rmse:0.461547	test-rmse:0.463137
[61]	train-rmse:0.461431	test-rmse:0.46305
[62]	train-rmse:0.461339	test-rmse:0.462979
[63]	train-rmse:0.461268	test-rmse:0.462928
[64]	train-rmse:0.461137	test-rmse:0.462813
[65]	train-rmse:0.461038	test-rmse:0.462732
[66]	train-rmse:0.460964	test-rmse:0.462681
[67]	train-rmse:0.460849	test-rmse:0.462587
[68]	train-rmse:0.460744	test-rmse:0.462503
[69]	train-rmse:0.460662	test-rmse:0.462446
[70]	train-rmse:0.460593	test-rmse:0.462395
[71]	train-rmse:0.460521	test-rmse:0.462347
[72]	train-rmse:0.460432	test-rmse:0.462281
[73]	train-rmse:0.460351	test-rmse:0.46221
[74]	train-rmse:0.46028	test-rmse:0.462161
[75]	train-rmse:0.460207	test-rmse:0.462113
[76]	train-rmse:0.460113	test-rmse:0.462038
[77]	train-rmse:0.460044	test-rmse:0.461992
[78]	train-rmse:0.459984	test-rmse:0.461954
[79]	train-rmse:0.459917	test-rmse:0.461911
[80]	train-rmse:0.45985	test-rmse:0.461865
[81]	train-rmse:0.459802	test-rmse:0.461841
[82]	train-rmse:0.459757	test-rmse:0.461811
[83]	train-rmse:0.4597	test-rmse:0.461779
[84]	train-rmse:0.459629	test-rmse:0.461723
[85]	train-rmse:0.459556	test-rmse:0.46167
[86]	train-rmse:0.45951	test-rmse:0.461643
[87]	train-rmse:0.459459	test-rmse:0.461609
[88]	train-rmse:0.459389	test-rmse:0.461553
[89]	train-rmse:0.459321	test-rmse:0.461508
[90]	train-rmse:0.45926	test-rmse:0.46146
[91]	train-rmse:0.459208	test-rmse:0.461435
[92]	train-rmse:0.459144	test-rmse:0.461394
[93]	train-rmse:0.459064	test-rmse:0.461334
[94]	train-rmse:0.458977	test-rmse:0.461258
[95]	train-rmse:0.458892	test-rmse:0.461193
[96]	train-rmse:0.45883	test-rmse:0.461158
[97]	train-rmse:0.458763	test-rmse:0.461109
[98]	train-rmse:0.458715	test-rmse:0.461084
[99]	train-rmse:0.458667	test-rmse:0.461051
[100]	train-rmse:0.45862	test-rmse:0.461025
[101]	train-rmse:0.458561	test-rmse:0.460985
[102]	train-rmse:0.458485	test-rmse:0.460929
[103]	train-rmse:0.458429	test-rmse:0.46089
[104]	train-rmse:0.458358	test-rmse:0.46085
[105]	train-rmse:0.458298	test-rmse:0.46081
[106]	train-rmse:0.458249	test-rmse:0.460781
[107]	train-rmse:0.458208	test-rmse:0.460761
[108]	train-rmse:0.458152	test-rmse:0.460726
[109]	train-rmse:0.458104	test-rmse:0.460691
[110]	train-rmse:0.458062	test-rmse:0.460668
[111]	train-rmse:0.458015	test-rmse:0.46064
[112]	train-rmse:0.45795	test-rmse:0.460591
[113]	train-rmse:0.457892	test-rmse:0.460552
[114]	train-rmse:0.457838	test-rmse:0.460513
[115]	train-rmse:0.457792	test-rmse:0.460485
[116]	train-rmse:0.457736	test-rmse:0.460451
[117]	train-rmse:0.457677	test-rmse:0.460414
[118]	train-rmse:0.457629	test-rmse:0.460385
[119]	train-rmse:0.457591	test-rmse:0.460364
[120]	train-rmse:0.457548	test-rmse:0.460338
[121]	train-rmse:0.457504	test-rmse:0.460321
[122]	train-rmse:0.457451	test-rmse:0.46029
[123]	train-rmse:0.4574	test-rmse:0.460258
[124]	train-rmse:0.457357	test-rmse:0.460242
[125]	train-rmse:0.457313	test-rmse:0.460215
[126]	train-rmse:0.457275	test-rmse:0.460195
[127]	train-rmse:0.457239	test-rmse:0.460181
[128]	train-rmse:0.457175	test-rmse:0.460133
[129]	train-rmse:0.457127	test-rmse:0.460101
[130]	train-rmse:0.457072	test-rmse:0.460069
[131]	train-rmse:0.45704	test-rmse:0.460059
[132]	train-rmse:0.456989	test-rmse:0.460023
[133]	train-rmse:0.456961	test-rmse:0.46001
[134]	train-rmse:0.456914	test-rmse:0.459983
[135]	train-rmse:0.456855	test-rmse:0.459941
[136]	train-rmse:0.4568	test-rmse:0.459908
[137]	train-rmse:0.456758	test-rmse:0.459893
[138]	train-rmse:0.456722	test-rmse:0.459872
[139]	train-rmse:0.456691	test-rmse:0.459851
[140]	train-rmse:0.456637	test-rmse:0.459813
[141]	train-rmse:0.456591	test-rmse:0.459779
[142]	train-rmse:0.456547	test-rmse:0.459753
[143]	train-rmse:0.456497	test-rmse:0.459717
[144]	train-rmse:0.456462	test-rmse:0.4597
[145]	train-rmse:0.456428	test-rmse:0.459689
[146]	train-rmse:0.45639	test-rmse:0.459668
[147]	train-rmse:0.456343	test-rmse:0.459636
[148]	train-rmse:0.456296	test-rmse:0.459606
[149]	train-rmse:0.456264	test-rmse:0.459592
[150]	train-rmse:0.456216	test-rmse:0.459563
[151]	train-rmse:0.45618	test-rmse:0.459541
[152]	train-rmse:0.456143	test-rmse:0.459521
[153]	train-rmse:0.456107	test-rmse:0.459505
[154]	train-rmse:0.45607	test-rmse:0.45948
[155]	train-rmse:0.456035	test-rmse:0.459458
[156]	train-rmse:0.455993	test-rmse:0.459439
[157]	train-rmse:0.455953	test-rmse:0.459421
[158]	train-rmse:0.455928	test-rmse:0.459423
[159]	train-rmse:0.455896	test-rmse:0.459411
[160]	train-rmse:0.455849	test-rmse:0.459382
[161]	train-rmse:0.455798	test-rmse:0.459353
[162]	train-rmse:0.455758	test-rmse:0.459332
[163]	train-rmse:0.45572	test-rmse:0.459312
[164]	train-rmse:0.455671	test-rmse:0.459274
[165]	train-rmse:0.455643	test-rmse:0.459267
[166]	train-rmse:0.455599	test-rmse:0.459238
[167]	train-rmse:0.455578	test-rmse:0.459229
[168]	train-rmse:0.455557	test-rmse:0.459222
[169]	train-rmse:0.455519	test-rmse:0.459205
[170]	train-rmse:0.455479	test-rmse:0.459182
[171]	train-rmse:0.455424	test-rmse:0.459142
[172]	train-rmse:0.455386	test-rmse:0.459117
[173]	train-rmse:0.455333	test-rmse:0.459082
[174]	train-rmse:0.455288	test-rmse:0.459061
[175]	train-rmse:0.455247	test-rmse:0.459037
[176]	train-rmse:0.455217	test-rmse:0.459022
[177]	train-rmse:0.455182	test-rmse:0.459006
[178]	train-rmse:0.45515	test-rmse:0.458995
[179]	train-rmse:0.455126	test-rmse:0.458987
[180]	train-rmse:0.455077	test-rmse:0.458954
[181]	train-rmse:0.455041	test-rmse:0.45894
[182]	train-rmse:0.455009	test-rmse:0.458925
[183]	train-rmse:0.454971	test-rmse:0.458911
[184]	train-rmse:0.454937	test-rmse:0.458897
[185]	train-rmse:0.454906	test-rmse:0.458882
[186]	train-rmse:0.454867	test-rmse:0.458865
[187]	train-rmse:0.454838	test-rmse:0.458856
[188]	train-rmse:0.454808	test-rmse:0.458839
[189]	train-rmse:0.454758	test-rmse:0.458799
[190]	train-rmse:0.454732	test-rmse:0.458785
[191]	train-rmse:0.454707	test-rmse:0.458781
[192]	train-rmse:0.454676	test-rmse:0.458763
[193]	train-rmse:0.454644	test-rmse:0.458749
[194]	train-rmse:0.454612	test-rmse:0.458727
[195]	train-rmse:0.454586	test-rmse:0.458717
[196]	train-rmse:0.454553	test-rmse:0.458698
[197]	train-rmse:0.454522	test-rmse:0.458686
[198]	train-rmse:0.454498	test-rmse:0.45868
[199]	train-rmse:0.454471	test-rmse:0.45867
[200]	train-rmse:0.454441	test-rmse:0.458658
[201]	train-rmse:0.454419	test-rmse:0.458648
[202]	train-rmse:0.454394	test-rmse:0.458632
[203]	train-rmse:0.454364	test-rmse:0.458618
[204]	train-rmse:0.454324	test-rmse:0.458591
[205]	train-rmse:0.454293	test-rmse:0.45858
[206]	train-rmse:0.454252	test-rmse:0.45856
[207]	train-rmse:0.454214	test-rmse:0.458538
[208]	train-rmse:0.454184	test-rmse:0.458523
[209]	train-rmse:0.454149	test-rmse:0.458506
[210]	train-rmse:0.45412	test-rmse:0.458498
[211]	train-rmse:0.454096	test-rmse:0.458492
[212]	train-rmse:0.454066	test-rmse:0.458483
[213]	train-rmse:0.454031	test-rmse:0.458469
[214]	train-rmse:0.454001	test-rmse:0.458454
[215]	train-rmse:0.453978	test-rmse:0.458447
[216]	train-rmse:0.453957	test-rmse:0.458442
[217]	train-rmse:0.45393	test-rmse:0.45844
[218]	train-rmse:0.453906	test-rmse:0.458437
[219]	train-rmse:0.453883	test-rmse:0.458433
[220]	train-rmse:0.453854	test-rmse:0.458424
[221]	train-rmse:0.453833	test-rmse:0.458417
[222]	train-rmse:0.453804	test-rmse:0.458404
[223]	train-rmse:0.453771	test-rmse:0.458387
[224]	train-rmse:0.453738	test-rmse:0.458379
[225]	train-rmse:0.453705	test-rmse:0.458364
[226]	train-rmse:0.453666	test-rmse:0.45834
[227]	train-rmse:0.453637	test-rmse:0.458324
[228]	train-rmse:0.453604	test-rmse:0.458308
[229]	train-rmse:0.453568	test-rmse:0.458286
[230]	train-rmse:0.453544	test-rmse:0.458278
[231]	train-rmse:0.453517	test-rmse:0.458261
[232]	train-rmse:0.453487	test-rmse:0.458256
[233]	train-rmse:0.453461	test-rmse:0.458247
[234]	train-rmse:0.453427	test-rmse:0.458229
[235]	train-rmse:0.453395	test-rmse:0.458214
[236]	train-rmse:0.453372	test-rmse:0.458208
[237]	train-rmse:0.453348	test-rmse:0.458201
[238]	train-rmse:0.453319	test-rmse:0.458192
[239]	train-rmse:0.453297	test-rmse:0.458187
[240]	train-rmse:0.453274	test-rmse:0.458178
[241]	train-rmse:0.453253	test-rmse:0.45817
[242]	train-rmse:0.45322	test-rmse:0.458155
[243]	train-rmse:0.453195	test-rmse:0.458147
[244]	train-rmse:0.453173	test-rmse:0.458142
[245]	train-rmse:0.453138	test-rmse:0.458128
[246]	train-rmse:0.453114	test-rmse:0.45812
[247]	train-rmse:0.453088	test-rmse:0.45811
[248]	train-rmse:0.453068	test-rmse:0.458109
[249]	train-rmse:0.453038	test-rmse:0.458096
[250]	train-rmse:0.45301	test-rmse:0.458085
[251]	train-rmse:0.452982	test-rmse:0.458079
[252]	train-rmse:0.452954	test-rmse:0.458069
[253]	train-rmse:0.452933	test-rmse:0.458065
[254]	train-rmse:0.452898	test-rmse:0.458045
[255]	train-rmse:0.452879	test-rmse:0.45804
[256]	train-rmse:0.452847	test-rmse:0.458028
[257]	train-rmse:0.452822	test-rmse:0.458019
[258]	train-rmse:0.452791	test-rmse:0.458005
[259]	train-rmse:0.452766	test-rmse:0.457988
[260]	train-rmse:0.452739	test-rmse:0.457979
[261]	train-rmse:0.452722	test-rmse:0.457977
[262]	train-rmse:0.452691	test-rmse:0.457961
[263]	train-rmse:0.452669	test-rmse:0.457954
[264]	train-rmse:0.452642	test-rmse:0.457943
[265]	train-rmse:0.452607	test-rmse:0.45792
[266]	train-rmse:0.452585	test-rmse:0.457913
[267]	train-rmse:0.452562	test-rmse:0.457908
[268]	train-rmse:0.452537	test-rmse:0.457899
[269]	train-rmse:0.452509	test-rmse:0.457888
[270]	train-rmse:0.452482	test-rmse:0.45788
[271]	train-rmse:0.452453	test-rmse:0.457868
[272]	train-rmse:0.452423	test-rmse:0.45786
[273]	train-rmse:0.452389	test-rmse:0.457846
[274]	train-rmse:0.45236	test-rmse:0.457834
[275]	train-rmse:0.452339	test-rmse:0.457828
[276]	train-rmse:0.452316	test-rmse:0.457822
[277]	train-rmse:0.452296	test-rmse:0.457817
[278]	train-rmse:0.452268	test-rmse:0.457805
[279]	train-rmse:0.452244	test-rmse:0.457801
[280]	train-rmse:0.452222	test-rmse:0.45779
[281]	train-rmse:0.452196	test-rmse:0.457782
[282]	train-rmse:0.452174	test-rmse:0.457773
[283]	train-rmse:0.452149	test-rmse:0.457759
[284]	train-rmse:0.452122	test-rmse:0.457752
[285]	train-rmse:0.452101	test-rmse:0.457744
[286]	train-rmse:0.452083	test-rmse:0.457738
[287]	train-rmse:0.452059	test-rmse:0.457734
[288]	train-rmse:0.452025	test-rmse:0.457713
[289]	train-rmse:0.451997	test-rmse:0.457701
[290]	train-rmse:0.451978	test-rmse:0.457696
[291]	train-rmse:0.451958	test-rmse:0.457692
[292]	train-rmse:0.45194	test-rmse:0.457688
[293]	train-rmse:0.451917	test-rmse:0.457677
[294]	train-rmse:0.451895	test-rmse:0.457669
[295]	train-rmse:0.451867	test-rmse:0.457656
[296]	train-rmse:0.451842	test-rmse:0.457648
[297]	train-rmse:0.451822	test-rmse:0.457639
[298]	train-rmse:0.451796	test-rmse:0.457633
[299]	train-rmse:0.45177	test-rmse:0.457627
[300]	train-rmse:0.451738	test-rmse:0.457606
[301]	train-rmse:0.451706	test-rmse:0.457592
[302]	train-rmse:0.451689	test-rmse:0.457587
[303]	train-rmse:0.451668	test-rmse:0.457585
[304]	train-rmse:0.451628	test-rmse:0.457558
[305]	train-rmse:0.451599	test-rmse:0.457544
[306]	train-rmse:0.451579	test-rmse:0.457537
[307]	train-rmse:0.451549	test-rmse:0.457524
[308]	train-rmse:0.451526	test-rmse:0.457518
[309]	train-rmse:0.451494	test-rmse:0.457504
[310]	train-rmse:0.451475	test-rmse:0.457502
[311]	train-rmse:0.451454	test-rmse:0.457501
[312]	train-rmse:0.451425	test-rmse:0.457489
[313]	train-rmse:0.451399	test-rmse:0.457478
[314]	train-rmse:0.451369	test-rmse:0.457469
[315]	train-rmse:0.451351	test-rmse:0.457465
[316]	train-rmse:0.45133	test-rmse:0.457461
[317]	train-rmse:0.451299	test-rmse:0.457448
[318]	train-rmse:0.451279	test-rmse:0.457441
[319]	train-rmse:0.45126	test-rmse:0.457432
[320]	train-rmse:0.451242	test-rmse:0.457431
[321]	train-rmse:0.451222	test-rmse:0.457429
[322]	train-rmse:0.451201	test-rmse:0.457426
[323]	train-rmse:0.451184	test-rmse:0.45742
[324]	train-rmse:0.451152	test-rmse:0.457406
[325]	train-rmse:0.451125	test-rmse:0.457398
[326]	train-rmse:0.451092	test-rmse:0.457376
[327]	train-rmse:0.451059	test-rmse:0.457362
[328]	train-rmse:0.45104	test-rmse:0.457359
[329]	train-rmse:0.451024	test-rmse:0.457355
[330]	train-rmse:0.451007	test-rmse:0.457355
[331]	train-rmse:0.450975	test-rmse:0.457341
[332]	train-rmse:0.450949	test-rmse:0.457331
[333]	train-rmse:0.450932	test-rmse:0.457331
[334]	train-rmse:0.450912	test-rmse:0.457331
[335]	train-rmse:0.450881	test-rmse:0.457317
[336]	train-rmse:0.450859	test-rmse:0.45732
[337]	train-rmse:0.450838	test-rmse:0.457311
[338]	train-rmse:0.450819	test-rmse:0.457301
[339]	train-rmse:0.450802	test-rmse:0.457296
[340]	train-rmse:0.45078	test-rmse:0.457294
[341]	train-rmse:0.450761	test-rmse:0.457294
[342]	train-rmse:0.450742	test-rmse:0.457292
[343]	train-rmse:0.450721	test-rmse:0.457293
[344]	train-rmse:0.450694	test-rmse:0.457288
[345]	train-rmse:0.450671	test-rmse:0.457282
[346]	train-rmse:0.450648	test-rmse:0.457273
[347]	train-rmse:0.450629	test-rmse:0.457266
[348]	train-rmse:0.450604	test-rmse:0.457255
[349]	train-rmse:0.450572	test-rmse:0.45724
[350]	train-rmse:0.450548	test-rmse:0.457233
[351]	train-rmse:0.450533	test-rmse:0.457233
[352]	train-rmse:0.450518	test-rmse:0.457229
[353]	train-rmse:0.450495	test-rmse:0.457227
[354]	train-rmse:0.450471	test-rmse:0.457216
[355]	train-rmse:0.450453	test-rmse:0.457215
[356]	train-rmse:0.450432	test-rmse:0.45721
[357]	train-rmse:0.450418	test-rmse:0.457208
[358]	train-rmse:0.450395	test-rmse:0.457203
[359]	train-rmse:0.45038	test-rmse:0.457203
[360]	train-rmse:0.45036	test-rmse:0.457198
[361]	train-rmse:0.450338	test-rmse:0.457192
[362]	train-rmse:0.450324	test-rmse:0.45719
[363]	train-rmse:0.450307	test-rmse:0.457186
[364]	train-rmse:0.450278	test-rmse:0.457174
[365]	train-rmse:0.450263	test-rmse:0.457174
[366]	train-rmse:0.450242	test-rmse:0.457167
[367]	train-rmse:0.450219	test-rmse:0.457159
[368]	train-rmse:0.450198	test-rmse:0.457153
[369]	train-rmse:0.450185	test-rmse:0.457154
[370]	train-rmse:0.450171	test-rmse:0.457156
[371]	train-rmse:0.450149	test-rmse:0.457148
[372]	train-rmse:0.450132	test-rmse:0.457147
[373]	train-rmse:0.450115	test-rmse:0.45714
[374]	train-rmse:0.450093	test-rmse:0.457139
[375]	train-rmse:0.45007	test-rmse:0.45713
[376]	train-rmse:0.450047	test-rmse:0.457126
[377]	train-rmse:0.450026	test-rmse:0.45712
[378]	train-rmse:0.450009	test-rmse:0.457117
[379]	train-rmse:0.449995	test-rmse:0.457116
[380]	train-rmse:0.449971	test-rmse:0.457112
[381]	train-rmse:0.449951	test-rmse:0.457108
[382]	train-rmse:0.449929	test-rmse:0.4571
[383]	train-rmse:0.449909	test-rmse:0.457098
[384]	train-rmse:0.44989	test-rmse:0.457091
[385]	train-rmse:0.449869	test-rmse:0.457089
[386]	train-rmse:0.449847	test-rmse:0.457085
[387]	train-rmse:0.449825	test-rmse:0.457078
[388]	train-rmse:0.449803	test-rmse:0.457071
[389]	train-rmse:0.449785	test-rmse:0.457065
[390]	train-rmse:0.449762	test-rmse:0.457064
[391]	train-rmse:0.44974	test-rmse:0.45706
[392]	train-rmse:0.449724	test-rmse:0.457057
[393]	train-rmse:0.449703	test-rmse:0.457052
[394]	train-rmse:0.449669	test-rmse:0.457036
[395]	train-rmse:0.449647	test-rmse:0.457033
[396]	train-rmse:0.44963	test-rmse:0.457029
[397]	train-rmse:0.44961	test-rmse:0.45702
[398]	train-rmse:0.449595	test-rmse:0.457021
[399]	train-rmse:0.44958	test-rmse:0.45702
[400]	train-rmse:0.44956	test-rmse:0.457016
[401]	train-rmse:0.449546	test-rmse:0.457014
[402]	train-rmse:0.449526	test-rmse:0.457008
[403]	train-rmse:0.449508	test-rmse:0.457004
[404]	train-rmse:0.449488	test-rmse:0.457006
[405]	train-rmse:0.449471	test-rmse:0.457006
[406]	train-rmse:0.449454	test-rmse:0.457002
[407]	train-rmse:0.449436	test-rmse:0.456998
[408]	train-rmse:0.449418	test-rmse:0.456996
[409]	train-rmse:0.449395	test-rmse:0.456988
[410]	train-rmse:0.449375	test-rmse:0.456983
[411]	train-rmse:0.449358	test-rmse:0.456984
[412]	train-rmse:0.449327	test-rmse:0.456967
[413]	train-rmse:0.449308	test-rmse:0.456963
[414]	train-rmse:0.449288	test-rmse:0.456956
[415]	train-rmse:0.449272	test-rmse:0.456953
[416]	train-rmse:0.44925	test-rmse:0.456944
[417]	train-rmse:0.449239	test-rmse:0.456944
[418]	train-rmse:0.449218	test-rmse:0.456938
[419]	train-rmse:0.449199	test-rmse:0.456932
[420]	train-rmse:0.449184	test-rmse:0.456927
[421]	train-rmse:0.449165	test-rmse:0.456921
[422]	train-rmse:0.44915	test-rmse:0.456918
[423]	train-rmse:0.449134	test-rmse:0.456916
[424]	train-rmse:0.449113	test-rmse:0.456904
[425]	train-rmse:0.44909	test-rmse:0.456897
[426]	train-rmse:0.449071	test-rmse:0.456891
[427]	train-rmse:0.449052	test-rmse:0.456888
[428]	train-rmse:0.449039	test-rmse:0.45689
[429]	train-rmse:0.449017	test-rmse:0.456883
[430]	train-rmse:0.449	test-rmse:0.456877
[431]	train-rmse:0.448982	test-rmse:0.456871
[432]	train-rmse:0.448959	test-rmse:0.456863
[433]	train-rmse:0.448943	test-rmse:0.456859
[434]	train-rmse:0.448927	test-rmse:0.456857
[435]	train-rmse:0.448908	test-rmse:0.456855
[436]	train-rmse:0.44889	test-rmse:0.456854
[437]	train-rmse:0.448871	test-rmse:0.45685
[438]	train-rmse:0.448851	test-rmse:0.456844
[439]	train-rmse:0.448827	test-rmse:0.456838
[440]	train-rmse:0.448804	test-rmse:0.456829
[441]	train-rmse:0.44879	test-rmse:0.456828
[442]	train-rmse:0.448771	test-rmse:0.456826
[443]	train-rmse:0.448749	test-rmse:0.456815
[444]	train-rmse:0.448731	test-rmse:0.456818
[445]	train-rmse:0.448716	test-rmse:0.456814
[446]	train-rmse:0.448701	test-rmse:0.456811
[447]	train-rmse:0.448682	test-rmse:0.456807
[448]	train-rmse:0.448666	test-rmse:0.456805
[449]	train-rmse:0.448649	test-rmse:0.456802
[450]	train-rmse:0.448632	test-rmse:0.456801
[451]	train-rmse:0.448611	test-rmse:0.456795
[452]	train-rmse:0.448593	test-rmse:0.456793
[453]	train-rmse:0.448578	test-rmse:0.456789
[454]	train-rmse:0.448562	test-rmse:0.456788
[455]	train-rmse:0.448545	test-rmse:0.456783
[456]	train-rmse:0.448524	test-rmse:0.456777
[457]	train-rmse:0.448512	test-rmse:0.456773
[458]	train-rmse:0.448495	test-rmse:0.456773
[459]	train-rmse:0.448478	test-rmse:0.45677
[460]	train-rmse:0.44845	test-rmse:0.456756
[461]	train-rmse:0.448433	test-rmse:0.456753
[462]	train-rmse:0.448415	test-rmse:0.456752
[463]	train-rmse:0.448397	test-rmse:0.456748
[464]	train-rmse:0.448383	test-rmse:0.456745
[465]	train-rmse:0.448363	test-rmse:0.45674
[466]	train-rmse:0.448339	test-rmse:0.456728
[467]	train-rmse:0.448317	test-rmse:0.456722
[468]	train-rmse:0.448299	test-rmse:0.456723
[469]	train-rmse:0.448281	test-rmse:0.456715
[470]	train-rmse:0.448263	test-rmse:0.456718
[471]	train-rmse:0.448242	test-rmse:0.456717
[472]	train-rmse:0.448222	test-rmse:0.456711
[473]	train-rmse:0.448204	test-rmse:0.456709
[474]	train-rmse:0.448185	test-rmse:0.456704
[475]	train-rmse:0.448164	test-rmse:0.456699
[476]	train-rmse:0.448147	test-rmse:0.456699
[477]	train-rmse:0.448128	test-rmse:0.456691
[478]	train-rmse:0.448102	test-rmse:0.456677
[479]	train-rmse:0.448086	test-rmse:0.456676
[480]	train-rmse:0.448074	test-rmse:0.456675
[481]	train-rmse:0.448059	test-rmse:0.456676
[482]	train-rmse:0.448042	test-rmse:0.456676
[483]	train-rmse:0.448024	test-rmse:0.45667
[484]	train-rmse:0.448	test-rmse:0.456662
[485]	train-rmse:0.44798	test-rmse:0.456656
[486]	train-rmse:0.447958	test-rmse:0.456655
[487]	train-rmse:0.447942	test-rmse:0.456655
[488]	train-rmse:0.44792	test-rmse:0.456646
[489]	train-rmse:0.447898	test-rmse:0.456638
[490]	train-rmse:0.447879	test-rmse:0.456633
[491]	train-rmse:0.44786	test-rmse:0.456633
[492]	train-rmse:0.447843	test-rmse:0.456626
[493]	train-rmse:0.447823	test-rmse:0.456621
[494]	train-rmse:0.447803	test-rmse:0.456618
[495]	train-rmse:0.447784	test-rmse:0.456614
[496]	train-rmse:0.447762	test-rmse:0.456607
[497]	train-rmse:0.447743	test-rmse:0.456604
[498]	train-rmse:0.447727	test-rmse:0.456602
[499]	train-rmse:0.447715	test-rmse:0.456601
[500]	train-rmse:0.4477	test-rmse:0.4566
[501]	train-rmse:0.447679	test-rmse:0.456594
[502]	train-rmse:0.447659	test-rmse:0.456587
[503]	train-rmse:0.447638	test-rmse:0.456583
[504]	train-rmse:0.447619	test-rmse:0.456581
[505]	train-rmse:0.447602	test-rmse:0.456581
[506]	train-rmse:0.447585	test-rmse:0.456579
[507]	train-rmse:0.447569	test-rmse:0.456579
[508]	train-rmse:0.447555	test-rmse:0.456575
[509]	train-rmse:0.447539	test-rmse:0.456571
[510]	train-rmse:0.447523	test-rmse:0.456566
[511]	train-rmse:0.447508	test-rmse:0.456564
[512]	train-rmse:0.447489	test-rmse:0.456559
[513]	train-rmse:0.447473	test-rmse:0.456559
[514]	train-rmse:0.447455	test-rmse:0.456555
[515]	train-rmse:0.447437	test-rmse:0.456552
[516]	train-rmse:0.447422	test-rmse:0.45655
[517]	train-rmse:0.447405	test-rmse:0.45655
[518]	train-rmse:0.447389	test-rmse:0.456549
[519]	train-rmse:0.447374	test-rmse:0.456546
[520]	train-rmse:0.447357	test-rmse:0.45654
[521]	train-rmse:0.447342	test-rmse:0.456538
[522]	train-rmse:0.447329	test-rmse:0.456535
[523]	train-rmse:0.44731	test-rmse:0.456529
[524]	train-rmse:0.447293	test-rmse:0.456528
[525]	train-rmse:0.447278	test-rmse:0.456527
[526]	train-rmse:0.447257	test-rmse:0.456523
[527]	train-rmse:0.447241	test-rmse:0.456522
[528]	train-rmse:0.447226	test-rmse:0.456519
[529]	train-rmse:0.447208	test-rmse:0.456513
[530]	train-rmse:0.447191	test-rmse:0.456511
[531]	train-rmse:0.447175	test-rmse:0.45651
[532]	train-rmse:0.447157	test-rmse:0.456505
[533]	train-rmse:0.447134	test-rmse:0.456498
[534]	train-rmse:0.447115	test-rmse:0.456495
[535]	train-rmse:0.447096	test-rmse:0.456494
[536]	train-rmse:0.447084	test-rmse:0.456493
[537]	train-rmse:0.447066	test-rmse:0.456491
[538]	train-rmse:0.447051	test-rmse:0.456491
[539]	train-rmse:0.447028	test-rmse:0.456484
[540]	train-rmse:0.447012	test-rmse:0.456482
[541]	train-rmse:0.446996	test-rmse:0.456481
[542]	train-rmse:0.446977	test-rmse:0.456479
[543]	train-rmse:0.44696	test-rmse:0.456476
[544]	train-rmse:0.446945	test-rmse:0.456477
[545]	train-rmse:0.446925	test-rmse:0.456472
[546]	train-rmse:0.446903	test-rmse:0.456464
[547]	train-rmse:0.446884	test-rmse:0.456464
[548]	train-rmse:0.446865	test-rmse:0.456464
[549]	train-rmse:0.44685	test-rmse:0.456462
[550]	train-rmse:0.446826	test-rmse:0.456447
[551]	train-rmse:0.446809	test-rmse:0.456444
[552]	train-rmse:0.44679	test-rmse:0.456443
[553]	train-rmse:0.446772	test-rmse:0.456443
[554]	train-rmse:0.446761	test-rmse:0.456443
[555]	train-rmse:0.446743	test-rmse:0.45644
[556]	train-rmse:0.446725	test-rmse:0.456437
[557]	train-rmse:0.446707	test-rmse:0.456438
[558]	train-rmse:0.44669	test-rmse:0.456435
[559]	train-rmse:0.446669	test-rmse:0.456423
[560]	train-rmse:0.446651	test-rmse:0.456424
[561]	train-rmse:0.446636	test-rmse:0.456423
[562]	train-rmse:0.446622	test-rmse:0.456422
[563]	train-rmse:0.446608	test-rmse:0.456422
[564]	train-rmse:0.446596	test-rmse:0.456422
[565]	train-rmse:0.44658	test-rmse:0.45642
[566]	train-rmse:0.446561	test-rmse:0.456417
[567]	train-rmse:0.446544	test-rmse:0.456418
[568]	train-rmse:0.446529	test-rmse:0.45642
[569]	train-rmse:0.446512	test-rmse:0.45642
[570]	train-rmse:0.446497	test-rmse:0.456418
     test-rmse-mean  test-rmse-std  train-rmse-mean  train-rmse-std
562        0.456422       0.000445         0.446622        0.000113
563        0.456422       0.000447         0.446608        0.000115
564        0.456422       0.000447         0.446596        0.000116
565        0.456420       0.000451         0.446580        0.000116
566        0.456417       0.000442         0.446561        0.000120

In [24]:
param_11 = {'booster':'gbtree',
         'nthread': 10,
         'max_depth':5, 
         'eta':0.2,
         'silent':1,
         'subsample':0.7, 
         'objective':'reg:linear',
         'eval_metric':'rmse',
         'colsample_bytree':0.7}

In [28]:
num_round = 566

dtest_11 = xgb.DMatrix(test_dataset_normalize[predictors_11], missing=np.nan)
submission_11 = train_pivot_6789_to_11[['id']].copy()
j =0 
for j in range(20):
    
    train_pivot_xgb_time2_sample = train_dataset_normalize[predictors_target_11].sample(2000000)
    train_feature_11 = train_pivot_xgb_time2_sample.drop(['target'],axis = 1)
    train_label_11 = train_pivot_xgb_time2_sample[['target']]

    dtrain_11 = xgb.DMatrix(train_feature_11,label = train_label_11,missing= np.nan)
    
    bst_11 = xgb.train(param_11, dtrain_11, num_round)
    print str(j) + 'training finished!'
    submission_11['predict_' + str(j)] = bst_11.predict(dtest_11)

print 'finished'


0training finished!
1training finished!
2training finished!
3training finished!
4training finished!
5training finished!
6training finished!
7training finished!
8training finished!
9training finished!
10training finished!
11training finished!
12training finished!
13training finished!
14training finished!
15training finished!
16training finished!
17training finished!
18training finished!
19training finished!
finished

In [12]:
# make prediction
dtest_11 = xgb.DMatrix(train_pivot_6789_to_11[predictors], missing=NaN)
submission_11 = train_pivot_6789_to_11[['id']].copy()
submission_11['predict'] = bst.predict(dtest)
xgb.plot_importance(bst)

In [29]:
submission_11.to_csv('submission_11_new.csv')

In [11]:
submission_11 = pd.read_csv('submission_11_new.csv',index_col =0)

In [12]:
submission_11.columns.values


Out[12]:
array(['id', 'predict_0', 'predict_1', 'predict_2', 'predict_3',
       'predict_4', 'predict_5', 'predict_6', 'predict_7', 'predict_8',
       'predict_9', 'predict_10', 'predict_11', 'predict_12', 'predict_13',
       'predict_14', 'predict_15', 'predict_16', 'predict_17',
       'predict_18', 'predict_19'], dtype=object)

for week 10



In [2]:
%ls


1_predata.ipynb                   stack_sub/
3_xgb.ipynb                       submission_10_new.csv
3_xgb_prediction.ipynb            submission_11_new.csv
3_xgb_test.ipynb                  submission_44fea.csv
4_keras_nn.ipynb                  submission_all_train.csv
5_random_forest.ipynb             submission_nn.csv
6_stack_model.ipynb               submission_nn_xgb
7_SGD_regressor.ipynb             test_dataset_10_normalize.csv
8_svm_linearSVR.ipynb             test_dataset_10_normalize_new.pickle
agencia_for_cliente_producto.csv  train_dataset_10_normalize.csv
bst_use_all_train.model           train_dataset_10_normalize.pickle
canal_for_cliente_producto.csv    train_pivot_56789_to_10_44fea.pickle
old_submission/                   train_pivot_56789_to_10_new.pickle
origin/                           train_pivot_6789_to_11_new.pickle
pivot_test.pickle                 train_pivot_xgb_time1_44fea.csv
pivot_train_with_nan.pickle       train_pivot_xgb_time1.csv
RF_model/                         train_pivot_xgb_time2_38fea.csv
ruta_for_cliente_producto.csv     train_pivot_xgb_time2.csv

In [2]:
predictors_target_10 = ['ruta_freq', 'clien_freq', 'agen_freq', 'prod_freq',
       'agen_for_log_de', 'ruta_for_log_de', 'cliente_for_log_de',
       'producto_for_log_de', 'agen_ruta_for_log_de',
       'agen_cliente_for_log_de', 'agen_producto_for_log_de',
       'ruta_cliente_for_log_de', 'ruta_producto_for_log_de',
       'cliente_producto_for_log_de', 'cliente_for_log_sum',
       'cliente_producto_agen_for_log_sum', 'corr', 't_min_1', 't_min_2',
       't_min_3', 't_min_4', 't_min_5', 't1_min_t2', 't1_min_t3',
       't1_min_t4', 't1_min_t5', 't2_min_t3', 't2_min_t4', 't2_min_t5',
       't3_min_t4', 't3_min_t5', 't4_min_t5', 'LR_prod', 'LR_prod_corr',
       'target', 't_m_5_cum', 't_m_4_cum', 't_m_3_cum', 't_m_2_cum',
       't_m_1_cum', 'NombreCliente', 'weight', 'weight_per_piece', 'pieces']

In [3]:
predictors_10 = ['ruta_freq', 'clien_freq', 'agen_freq', 'prod_freq',
       'agen_for_log_de', 'ruta_for_log_de', 'cliente_for_log_de',
       'producto_for_log_de', 'agen_ruta_for_log_de',
       'agen_cliente_for_log_de', 'agen_producto_for_log_de',
       'ruta_cliente_for_log_de', 'ruta_producto_for_log_de',
       'cliente_producto_for_log_de', 'cliente_for_log_sum',
       'cliente_producto_agen_for_log_sum', 'corr', 't_min_1', 't_min_2',
       't_min_3', 't_min_4', 't_min_5', 't1_min_t2', 't1_min_t3',
       't1_min_t4', 't1_min_t5', 't2_min_t3', 't2_min_t4', 't2_min_t5',
       't3_min_t4', 't3_min_t5', 't4_min_t5', 'LR_prod', 'LR_prod_corr',
       't_m_5_cum', 't_m_4_cum', 't_m_3_cum', 't_m_2_cum',
       't_m_1_cum', 'NombreCliente', 'weight', 'weight_per_piece', 'pieces']

In [4]:
def normalize_dataset_10(train_dataset,test_dataset):
    train_dataset_normalize = train_dataset[predictors_10].copy()
    train_dataset_normalize['label'] = 0    
    
    test_dataset_normalize = test_dataset[predictors_10].copy()
    test_dataset_normalize['label'] = 1
    
    whole_dataset = pd.concat([train_dataset_normalize,test_dataset_normalize])
    whole_dataset_normalize = whole_dataset.apply(f,axis = 0)
    
    train_dataset_normalize = whole_dataset_normalize.loc[whole_dataset['label'] == 0]
    test_dataset_normalize = whole_dataset_normalize.loc[whole_dataset['label']==1]
    
    train_dataset_normalize.drop(['label'],axis = 1,inplace = True)
    test_dataset_normalize.drop(['label'],axis =1,inplace = True)
    
    train_dataset_normalize['target'] = train_dataset['target'].copy() 
    
#     target = train_dataset['target']
    return train_dataset_normalize,test_dataset_normalize

In [ ]:
dtypes = {'agen_for_log_de':'float32',
        'ruta_for_log_de':'float32',
        'cliente_for_log_de':'float32',
        'producto_for_log_de':'float32',
        'agen_ruta_for_log_de':'float32',
        'agen_cliente_for_log_de':'float32',
        'agen_producto_for_log_de':'float32',
        'ruta_cliente_for_log_de':'float32',
        'ruta_producto_for_log_de':"float32",
        'cliente_producto_for_log_de':'float32',
        'cliente_for_log_sum':'float32',
        'corr':'float32',
        't_min_1':'float32',
        't_min_2':'float32',
        't_min_3':'float32',
        't_min_4':'float32',
        't_min_5':'float32',
        't1_min_t2':'float32',
        't1_min_t3':'float32',
        't1_min_t4':'float32',
        't1_min_t5':'float32',
        't2_min_t3':'float32',
        't2_min_t4':'float32',
        't2_min_t5':'float32',
        't3_min_t4':'float32',
        't3_min_t5':'float32',
        't4_min_t5':'float32',
        'LR_prod':'float32',
        'LR_prod_corr':'float32',
        'target':'float32',
        't_m_5_cum':'float32',
        't_m_4_cum' :'float32',
        't_m_3_cum':'float32',
        't_m_2_cum':'float32',
        't_m_1_cum':'float32',
        'NombreCliente':'int32',
        'weight':'float32',
        'weight_per_piece':'float32',
        'pieces':'float32'}

In [ ]:
train_pivot_xgb_time1 = pd.read_csv('train_pivot_xgb_time1_44fea.csv',dtype = np.float32,index_col = 0)

In [3]:
train_pivot_56789_to_10 = pd.read_pickle('train_pivot_56789_to_10_44fea.pickle')

In [4]:
train_pivot_56789_to_10.columns.values


Out[4]:
array(['Cliente_ID', 'Producto_ID', 'id', 'sem10_sem11', 'Agencia_ID',
       'Canal_ID', 'Ruta_SAK', 'ruta_freq', 'clien_freq', 'agen_freq',
       'prod_freq', 'agen_for_log_de', 'ruta_for_log_de',
       'cliente_for_log_de', 'producto_for_log_de', 'agen_ruta_for_log_de',
       'agen_cliente_for_log_de', 'agen_producto_for_log_de',
       'ruta_cliente_for_log_de', 'ruta_producto_for_log_de',
       'cliente_producto_for_log_de', 'cliente_for_log_sum',
       'cliente_producto_agen_for_log_sum', 'corr', 't_min_1', 't_min_2',
       't_min_3', 't_min_4', 't_min_5', 't1_min_t2', 't1_min_t3',
       't1_min_t4', 't1_min_t5', 't2_min_t3', 't2_min_t4', 't2_min_t5',
       't3_min_t4', 't3_min_t5', 't4_min_t5', 'LR_prod', 'LR_prod_corr',
       't_m_5_cum', 't_m_4_cum', 't_m_3_cum', 't_m_2_cum', 't_m_1_cum',
       'NombreCliente', 'weight', 'weight_per_piece', 'pieces'], dtype=object)

In [4]:
train_pivot_xgb_time1.columns.values


Out[4]:
array(['Cliente_ID', 'Producto_ID', 'Agencia_ID', 'Canal_ID', 'Ruta_SAK',
       'ruta_freq', 'clien_freq', 'agen_freq', 'prod_freq',
       'agen_for_log_de', 'ruta_for_log_de', 'cliente_for_log_de',
       'producto_for_log_de', 'agen_ruta_for_log_de',
       'agen_cliente_for_log_de', 'agen_producto_for_log_de',
       'ruta_cliente_for_log_de', 'ruta_producto_for_log_de',
       'cliente_producto_for_log_de', 'cliente_for_log_sum',
       'cliente_producto_agen_for_log_sum', 'corr', 't_min_1', 't_min_2',
       't_min_3', 't_min_4', 't_min_5', 't1_min_t2', 't1_min_t3',
       't1_min_t4', 't1_min_t5', 't2_min_t3', 't2_min_t4', 't2_min_t5',
       't3_min_t4', 't3_min_t5', 't4_min_t5', 'LR_prod', 'LR_prod_corr',
       'target', 't_m_5_cum', 't_m_4_cum', 't_m_3_cum', 't_m_2_cum',
       't_m_1_cum', 'NombreCliente', 'weight', 'weight_per_piece', 'pieces'], dtype=object)

In [11]:
train_dataset_10_normalize, test_dataset_10_normalize = normalize_dataset_10(train_pivot_xgb_time1,
                                                                          train_pivot_56789_to_10)


/usr/local/lib/python2.7/dist-packages/ipykernel/__main__.py:14: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
/usr/local/lib/python2.7/dist-packages/ipykernel/__main__.py:15: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
/usr/local/lib/python2.7/dist-packages/ipykernel/__main__.py:17: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

In [13]:
train_dataset_10_normalize.head()


Out[13]:
Semana agen_for_log_de ruta_for_log_de cliente_for_log_de producto_for_log_de agen_ruta_for_log_de agen_cliente_for_log_de agen_producto_for_log_de ruta_cliente_for_log_de ruta_producto_for_log_de cliente_producto_for_log_de ... t_m_5_cum t_m_4_cum t_m_3_cum t_m_2_cum t_m_1_cum NombreCliente weight weight_per_piece pieces target
0 8.788259 5.529159 2.906576 3.130665 4.665460 3.354598 3.377005 3.292888 NaN NaN ... NaN NaN NaN NaN NaN -1.822053 1.391852 -0.188302 0.470006 4.574711
1 7.134035 5.691308 2.906576 -0.117290 3.590018 2.819381 3.083452 2.530998 2.647204 1.549154 ... 1.173570 1.271504 1.338973 1.462613 1.794103 -1.180468 1.530289 NaN NaN 2.639057
2 7.134035 5.691308 2.906576 2.136123 3.590018 2.819381 1.418874 2.530998 1.075756 NaN ... NaN NaN NaN NaN NaN -1.180468 -0.061744 -0.435800 0.160219 2.397895
3 7.134035 5.691308 2.906576 2.236749 3.590018 2.819381 3.923257 2.530998 3.817979 2.509546 ... 1.858372 2.182535 2.202313 2.287777 2.628881 -1.180468 0.872711 -0.291426 0.470006 3.784190
4 7.134035 5.691308 2.906576 0.250182 3.590018 2.819381 5.702605 2.530998 5.278630 3.337253 ... 2.967155 2.699262 2.780972 2.979197 3.348328 -1.180468 0.492007 -0.367050 0.470006 4.682131

5 rows × 39 columns


In [4]:
%ls


1_predata.ipynb                   stack_sub/
3_xgb.ipynb                       submission_10_new.csv
3_xgb_prediction.ipynb            submission_11_new.csv
4_keras_nn.ipynb                  submission_44fea.csv
5_random_forest.ipynb             submission_nn.csv
6_stack_model.ipynb               submission_nn_xgb
7_SGD_regressor.ipynb             test_dataset_10_normalize.csv
8_svm_linearSVR.ipynb             train_dataset_10_normalize.csv
agencia_for_cliente_producto.csv  train_dataset_10_normalize.pickle
canal_for_cliente_producto.csv    train_pivot_56789_to_10_44fea.pickle
old_submission/                   train_pivot_56789_to_10_new.pickle
origin/                           train_pivot_6789_to_11_new.pickle
pivot_test.pickle                 train_pivot_xgb_time1_44fea.csv
pivot_train_with_nan.pickle       train_pivot_xgb_time1.csv
RF_model/                         train_pivot_xgb_time2_38fea.csv
ruta_for_cliente_producto.csv     train_pivot_xgb_time2.csv

read normalize_train



In [ ]:
train_dataset_10_normalize = pd.read_csv('train_dataset_10_normalize.csv',index_col = 0)
train_dataset_10_normalize.head()

In [23]:
test_dataset_10_normalize = pd.read_pickle('test_dataset_10_normalize_new.pickle')
test_dataset_10_normalize.head()


Out[23]:
agen_for_log_de ruta_for_log_de cliente_for_log_de producto_for_log_de agen_ruta_for_log_de agen_cliente_for_log_de agen_producto_for_log_de ruta_cliente_for_log_de ruta_producto_for_log_de cliente_producto_for_log_de ... t_m_5_cum t_m_4_cum t_m_3_cum t_m_2_cum t_m_1_cum NombreCliente weight weight_per_piece pieces id
0 8.973844 6.397834 3.037557 1.835223 5.398326 3.786630 1.577787 3.812083 NaN NaN ... NaN NaN NaN NaN NaN -1.825542 1.706797 NaN NaN 1569352
1 7.185299 5.729961 3.037557 5.701978 3.681476 2.891354 5.064185 2.595791 3.870621 2.473158 ... 2.257555 2.204852 2.173276 2.286881 2.597253 -1.623858 1.876383 NaN NaN 6667200
2 7.185299 5.729961 3.037557 4.924975 3.681476 2.891354 3.943551 2.595791 3.801173 1.670748 ... NaN -0.273540 0.548709 0.768985 1.239590 -1.623858 0.976539 NaN NaN 1592616
3 7.185299 5.729961 3.037557 6.049174 3.681476 2.891354 5.509614 2.595791 4.969614 3.183686 ... 2.994623 2.686150 2.797207 2.862836 3.214847 -1.623858 1.668727 NaN NaN 3909690
4 7.185299 5.729961 3.037557 3.371384 3.681476 2.891354 4.432333 2.595791 3.323528 2.531004 ... 2.028818 2.125816 2.213651 2.354525 2.647532 -1.623858 1.277641 NaN NaN 3659672

5 rows × 39 columns


In [24]:
test_dataset_10_normalize.columns.values


Out[24]:
array(['agen_for_log_de', 'ruta_for_log_de', 'cliente_for_log_de',
       'producto_for_log_de', 'agen_ruta_for_log_de',
       'agen_cliente_for_log_de', 'agen_producto_for_log_de',
       'ruta_cliente_for_log_de', 'ruta_producto_for_log_de',
       'cliente_producto_for_log_de', 'cliente_for_log_sum', 'corr',
       't_min_1', 't_min_2', 't_min_3', 't_min_4', 't_min_5', 't1_min_t2',
       't1_min_t3', 't1_min_t4', 't1_min_t5', 't2_min_t3', 't2_min_t4',
       't2_min_t5', 't3_min_t4', 't3_min_t5', 't4_min_t5', 'LR_prod',
       'LR_prod_corr', 't_m_5_cum', 't_m_4_cum', 't_m_3_cum', 't_m_2_cum',
       't_m_1_cum', 'NombreCliente', 'weight', 'weight_per_piece',
       'pieces', 'id'], dtype=object)

In [7]:
param_10 = {'booster':'gbtree',
         'nthread': 11,
         'max_depth':5, 
         'eta':0.1,
         'silent':1,
         'subsample':0.7, 
         'objective':'reg:linear',
         'eval_metric':'rmse',
         'colsample_bytree':0.7}

In [6]:
# train_dataset_10_normalize = train_pivot_xgb_time1[predictors_target_10].sample(2000000)

In [8]:
# train_pivot_xgb_time1_sample = train_dataset_10_normalize[predictors_target_10].sample(2000000)

train_feature_10 = train_dataset_10_normalize.drop(['target'],axis = 1)
train_label_10 = train_dataset_10_normalize[['target']]

dtrain_10 = xgb.DMatrix(train_feature_10,label = train_label_10,missing= np.nan)

In [9]:
gc.collect()


Out[9]:
324

In [10]:
num_round = 20000

cvresult = xgb.cv(param_10, dtrain_10, num_round, nfold=5,show_stdv=False,
                        seed = 0, early_stopping_rounds=5,verbose_eval = 1)
print(cvresult.tail())


[0]	train-rmse:1.25273	test-rmse:1.25273
[1]	train-rmse:1.14826	test-rmse:1.14826
[2]	train-rmse:1.05531	test-rmse:1.05531
[3]	train-rmse:0.972803	test-rmse:0.972797
[4]	train-rmse:0.900266	test-rmse:0.900262
[5]	train-rmse:0.836907	test-rmse:0.836904
[6]	train-rmse:0.781313	test-rmse:0.781317
[7]	train-rmse:0.732719	test-rmse:0.732726
[8]	train-rmse:0.690846	test-rmse:0.690862
[9]	train-rmse:0.654807	test-rmse:0.654823
[10]	train-rmse:0.623818	test-rmse:0.623832
[11]	train-rmse:0.597409	test-rmse:0.597424
[12]	train-rmse:0.57508	test-rmse:0.575096
[13]	train-rmse:0.556027	test-rmse:0.556043
[14]	train-rmse:0.539989	test-rmse:0.540005
[15]	train-rmse:0.526533	test-rmse:0.526549
[16]	train-rmse:0.51534	test-rmse:0.515358
[17]	train-rmse:0.505916	test-rmse:0.505937
[18]	train-rmse:0.49811	test-rmse:0.498132
[19]	train-rmse:0.491551	test-rmse:0.491573
[20]	train-rmse:0.486143	test-rmse:0.486171
[21]	train-rmse:0.481592	test-rmse:0.481619
[22]	train-rmse:0.477847	test-rmse:0.477874
[23]	train-rmse:0.474703	test-rmse:0.474729
[24]	train-rmse:0.472046	test-rmse:0.472071
[25]	train-rmse:0.469869	test-rmse:0.469897
[26]	train-rmse:0.467985	test-rmse:0.468013
[27]	train-rmse:0.466445	test-rmse:0.466473
[28]	train-rmse:0.465138	test-rmse:0.46517
[29]	train-rmse:0.46404	test-rmse:0.464073
[30]	train-rmse:0.4631	test-rmse:0.463136
[31]	train-rmse:0.462288	test-rmse:0.462327
[32]	train-rmse:0.461587	test-rmse:0.461626
[33]	train-rmse:0.460999	test-rmse:0.46104
[34]	train-rmse:0.460476	test-rmse:0.460517
[35]	train-rmse:0.460023	test-rmse:0.460065
[36]	train-rmse:0.459617	test-rmse:0.45966
[37]	train-rmse:0.45923	test-rmse:0.459275
[38]	train-rmse:0.458913	test-rmse:0.458959
[39]	train-rmse:0.45864	test-rmse:0.458687
[40]	train-rmse:0.458337	test-rmse:0.458386
[41]	train-rmse:0.458087	test-rmse:0.458139
[42]	train-rmse:0.457854	test-rmse:0.457906
[43]	train-rmse:0.457634	test-rmse:0.457688
[44]	train-rmse:0.457435	test-rmse:0.45749
[45]	train-rmse:0.457258	test-rmse:0.457314
[46]	train-rmse:0.457092	test-rmse:0.457149
[47]	train-rmse:0.456931	test-rmse:0.456989
[48]	train-rmse:0.456794	test-rmse:0.456853
[49]	train-rmse:0.456649	test-rmse:0.45671
[50]	train-rmse:0.45652	test-rmse:0.456582
[51]	train-rmse:0.456437	test-rmse:0.456501
[52]	train-rmse:0.456325	test-rmse:0.456391
[53]	train-rmse:0.456244	test-rmse:0.45631
[54]	train-rmse:0.456157	test-rmse:0.456224
[55]	train-rmse:0.45605	test-rmse:0.456117
[56]	train-rmse:0.45597	test-rmse:0.456038
[57]	train-rmse:0.455873	test-rmse:0.455943
[58]	train-rmse:0.455793	test-rmse:0.455864
[59]	train-rmse:0.455705	test-rmse:0.455778
[60]	train-rmse:0.455627	test-rmse:0.455702
[61]	train-rmse:0.455557	test-rmse:0.455633
[62]	train-rmse:0.455486	test-rmse:0.455563
[63]	train-rmse:0.455417	test-rmse:0.455496
[64]	train-rmse:0.455351	test-rmse:0.455431
[65]	train-rmse:0.455293	test-rmse:0.455373
[66]	train-rmse:0.45523	test-rmse:0.455311
[67]	train-rmse:0.455156	test-rmse:0.455239
[68]	train-rmse:0.455093	test-rmse:0.455176
[69]	train-rmse:0.455025	test-rmse:0.45511
[70]	train-rmse:0.454917	test-rmse:0.455003
[71]	train-rmse:0.454866	test-rmse:0.454954
[72]	train-rmse:0.454798	test-rmse:0.454887
[73]	train-rmse:0.454729	test-rmse:0.454819
[74]	train-rmse:0.454675	test-rmse:0.454767
[75]	train-rmse:0.454589	test-rmse:0.454682
[76]	train-rmse:0.454517	test-rmse:0.45461
[77]	train-rmse:0.454455	test-rmse:0.45455
[78]	train-rmse:0.454386	test-rmse:0.454481
[79]	train-rmse:0.454315	test-rmse:0.454411
[80]	train-rmse:0.454273	test-rmse:0.45437
[81]	train-rmse:0.454208	test-rmse:0.454306
[82]	train-rmse:0.454152	test-rmse:0.454252
[83]	train-rmse:0.454084	test-rmse:0.454184
[84]	train-rmse:0.454021	test-rmse:0.454123
[85]	train-rmse:0.453973	test-rmse:0.454076
[86]	train-rmse:0.453923	test-rmse:0.454026
[87]	train-rmse:0.453872	test-rmse:0.453976
[88]	train-rmse:0.453829	test-rmse:0.453935
[89]	train-rmse:0.453797	test-rmse:0.453904
[90]	train-rmse:0.453744	test-rmse:0.453854
[91]	train-rmse:0.453681	test-rmse:0.453792
[92]	train-rmse:0.453628	test-rmse:0.45374
[93]	train-rmse:0.45358	test-rmse:0.453693
[94]	train-rmse:0.453543	test-rmse:0.453656
[95]	train-rmse:0.45351	test-rmse:0.453623
[96]	train-rmse:0.453455	test-rmse:0.453569
[97]	train-rmse:0.453402	test-rmse:0.453516
[98]	train-rmse:0.453351	test-rmse:0.453467
[99]	train-rmse:0.453304	test-rmse:0.45342
[100]	train-rmse:0.453268	test-rmse:0.453385
[101]	train-rmse:0.453221	test-rmse:0.453339
[102]	train-rmse:0.453174	test-rmse:0.453293
[103]	train-rmse:0.453101	test-rmse:0.453221
[104]	train-rmse:0.453065	test-rmse:0.453185
[105]	train-rmse:0.453005	test-rmse:0.453125
[106]	train-rmse:0.452947	test-rmse:0.453068
[107]	train-rmse:0.452911	test-rmse:0.453034
[108]	train-rmse:0.452863	test-rmse:0.452987
[109]	train-rmse:0.452813	test-rmse:0.452938
[110]	train-rmse:0.45277	test-rmse:0.452896
[111]	train-rmse:0.452728	test-rmse:0.452855
[112]	train-rmse:0.452696	test-rmse:0.452825
[113]	train-rmse:0.452665	test-rmse:0.452795
[114]	train-rmse:0.452626	test-rmse:0.452758
[115]	train-rmse:0.452591	test-rmse:0.452723
[116]	train-rmse:0.452559	test-rmse:0.452692
[117]	train-rmse:0.452507	test-rmse:0.452641
[118]	train-rmse:0.452474	test-rmse:0.452608
[119]	train-rmse:0.452416	test-rmse:0.45255
[120]	train-rmse:0.452366	test-rmse:0.452502
[121]	train-rmse:0.452318	test-rmse:0.452454
[122]	train-rmse:0.452282	test-rmse:0.452419
[123]	train-rmse:0.452225	test-rmse:0.452363
[124]	train-rmse:0.452185	test-rmse:0.452323
[125]	train-rmse:0.452153	test-rmse:0.452291
[126]	train-rmse:0.452117	test-rmse:0.452258
[127]	train-rmse:0.45208	test-rmse:0.452221
[128]	train-rmse:0.452055	test-rmse:0.452199
[129]	train-rmse:0.452032	test-rmse:0.452176
[130]	train-rmse:0.451981	test-rmse:0.452125
[131]	train-rmse:0.451931	test-rmse:0.452076
[132]	train-rmse:0.451895	test-rmse:0.452043
[133]	train-rmse:0.451843	test-rmse:0.451992
[134]	train-rmse:0.4518	test-rmse:0.45195
[135]	train-rmse:0.451763	test-rmse:0.451914
[136]	train-rmse:0.451727	test-rmse:0.451879
[137]	train-rmse:0.451695	test-rmse:0.451848
[138]	train-rmse:0.45166	test-rmse:0.451815
[139]	train-rmse:0.451624	test-rmse:0.451779
[140]	train-rmse:0.451584	test-rmse:0.45174
[141]	train-rmse:0.451559	test-rmse:0.451717
[142]	train-rmse:0.451526	test-rmse:0.451686
[143]	train-rmse:0.451487	test-rmse:0.451648
[144]	train-rmse:0.451458	test-rmse:0.45162
[145]	train-rmse:0.451425	test-rmse:0.451588
[146]	train-rmse:0.451396	test-rmse:0.45156
[147]	train-rmse:0.451359	test-rmse:0.451524
[148]	train-rmse:0.451337	test-rmse:0.451503
[149]	train-rmse:0.451314	test-rmse:0.45148
[150]	train-rmse:0.451282	test-rmse:0.451449
[151]	train-rmse:0.451254	test-rmse:0.451422
[152]	train-rmse:0.451225	test-rmse:0.451395
[153]	train-rmse:0.451203	test-rmse:0.451374
[154]	train-rmse:0.45117	test-rmse:0.451341
[155]	train-rmse:0.451145	test-rmse:0.451316
[156]	train-rmse:0.451112	test-rmse:0.451284
[157]	train-rmse:0.451084	test-rmse:0.451257
[158]	train-rmse:0.451051	test-rmse:0.451226
[159]	train-rmse:0.451023	test-rmse:0.451199
[160]	train-rmse:0.450995	test-rmse:0.451172
[161]	train-rmse:0.450968	test-rmse:0.451146
[162]	train-rmse:0.450937	test-rmse:0.451116
[163]	train-rmse:0.450913	test-rmse:0.451094
[164]	train-rmse:0.450871	test-rmse:0.451052
[165]	train-rmse:0.450853	test-rmse:0.451036
[166]	train-rmse:0.450821	test-rmse:0.451005
[167]	train-rmse:0.450798	test-rmse:0.450983
[168]	train-rmse:0.450772	test-rmse:0.450959
[169]	train-rmse:0.45075	test-rmse:0.450938
[170]	train-rmse:0.450721	test-rmse:0.450909
[171]	train-rmse:0.450695	test-rmse:0.450884
[172]	train-rmse:0.450664	test-rmse:0.450853
[173]	train-rmse:0.450638	test-rmse:0.450829
[174]	train-rmse:0.450613	test-rmse:0.450804
[175]	train-rmse:0.450594	test-rmse:0.450787
[176]	train-rmse:0.450568	test-rmse:0.450761
[177]	train-rmse:0.450546	test-rmse:0.450741
[178]	train-rmse:0.450512	test-rmse:0.450707
[179]	train-rmse:0.450485	test-rmse:0.45068
[180]	train-rmse:0.450467	test-rmse:0.450664
[181]	train-rmse:0.450444	test-rmse:0.450643
[182]	train-rmse:0.450417	test-rmse:0.450617
[183]	train-rmse:0.450388	test-rmse:0.450587
[184]	train-rmse:0.450363	test-rmse:0.450564
[185]	train-rmse:0.450333	test-rmse:0.450535
[186]	train-rmse:0.450298	test-rmse:0.4505
[187]	train-rmse:0.450263	test-rmse:0.450465
[188]	train-rmse:0.450239	test-rmse:0.450443
[189]	train-rmse:0.450212	test-rmse:0.450418
[190]	train-rmse:0.450197	test-rmse:0.450403
[191]	train-rmse:0.45018	test-rmse:0.450388
[192]	train-rmse:0.450158	test-rmse:0.450367
[193]	train-rmse:0.450121	test-rmse:0.45033
[194]	train-rmse:0.450093	test-rmse:0.450302
[195]	train-rmse:0.450073	test-rmse:0.450283
[196]	train-rmse:0.450053	test-rmse:0.450264
[197]	train-rmse:0.450033	test-rmse:0.450245
[198]	train-rmse:0.450014	test-rmse:0.450227
[199]	train-rmse:0.44999	test-rmse:0.450203
[200]	train-rmse:0.449963	test-rmse:0.450177
[201]	train-rmse:0.449944	test-rmse:0.450159
[202]	train-rmse:0.449929	test-rmse:0.450144
[203]	train-rmse:0.449907	test-rmse:0.450123
[204]	train-rmse:0.449886	test-rmse:0.450102
[205]	train-rmse:0.449869	test-rmse:0.450086
[206]	train-rmse:0.449845	test-rmse:0.450063
[207]	train-rmse:0.449828	test-rmse:0.450047
[208]	train-rmse:0.449806	test-rmse:0.450026
[209]	train-rmse:0.449785	test-rmse:0.450005
[210]	train-rmse:0.449762	test-rmse:0.449983
[211]	train-rmse:0.449738	test-rmse:0.44996
[212]	train-rmse:0.449724	test-rmse:0.449947
[213]	train-rmse:0.449702	test-rmse:0.449926
[214]	train-rmse:0.449681	test-rmse:0.449906
[215]	train-rmse:0.449659	test-rmse:0.449884
[216]	train-rmse:0.449641	test-rmse:0.449868
[217]	train-rmse:0.449622	test-rmse:0.44985
[218]	train-rmse:0.449605	test-rmse:0.449835
[219]	train-rmse:0.44959	test-rmse:0.44982
[220]	train-rmse:0.449571	test-rmse:0.449801
[221]	train-rmse:0.449553	test-rmse:0.449785
[222]	train-rmse:0.449536	test-rmse:0.449769
[223]	train-rmse:0.449517	test-rmse:0.44975
[224]	train-rmse:0.449496	test-rmse:0.44973
[225]	train-rmse:0.449479	test-rmse:0.449713
[226]	train-rmse:0.449463	test-rmse:0.449698
[227]	train-rmse:0.449441	test-rmse:0.449677
[228]	train-rmse:0.449417	test-rmse:0.449654
[229]	train-rmse:0.449402	test-rmse:0.44964
[230]	train-rmse:0.449385	test-rmse:0.449623
[231]	train-rmse:0.449369	test-rmse:0.449608
[232]	train-rmse:0.449352	test-rmse:0.449591
[233]	train-rmse:0.449332	test-rmse:0.449572
[234]	train-rmse:0.449318	test-rmse:0.449559
[235]	train-rmse:0.449303	test-rmse:0.449545
[236]	train-rmse:0.449284	test-rmse:0.449527
[237]	train-rmse:0.449269	test-rmse:0.449513
[238]	train-rmse:0.449249	test-rmse:0.449494
[239]	train-rmse:0.449234	test-rmse:0.449479
[240]	train-rmse:0.449213	test-rmse:0.449459
[241]	train-rmse:0.449193	test-rmse:0.44944
[242]	train-rmse:0.449174	test-rmse:0.449422
[243]	train-rmse:0.449152	test-rmse:0.449401
[244]	train-rmse:0.449135	test-rmse:0.449385
[245]	train-rmse:0.449119	test-rmse:0.44937
[246]	train-rmse:0.449107	test-rmse:0.449358
[247]	train-rmse:0.449092	test-rmse:0.449344
[248]	train-rmse:0.44907	test-rmse:0.449324
[249]	train-rmse:0.449054	test-rmse:0.449309
[250]	train-rmse:0.449032	test-rmse:0.449288
[251]	train-rmse:0.449016	test-rmse:0.449272
[252]	train-rmse:0.449002	test-rmse:0.449259
[253]	train-rmse:0.448973	test-rmse:0.449232
[254]	train-rmse:0.44896	test-rmse:0.449219
[255]	train-rmse:0.448945	test-rmse:0.449205
[256]	train-rmse:0.44893	test-rmse:0.449191
[257]	train-rmse:0.44891	test-rmse:0.449173
[258]	train-rmse:0.448895	test-rmse:0.449158
[259]	train-rmse:0.448882	test-rmse:0.449146
[260]	train-rmse:0.448864	test-rmse:0.449128
[261]	train-rmse:0.448845	test-rmse:0.44911
[262]	train-rmse:0.448831	test-rmse:0.449097
[263]	train-rmse:0.448815	test-rmse:0.449081
[264]	train-rmse:0.448801	test-rmse:0.44907
[265]	train-rmse:0.448786	test-rmse:0.449056
[266]	train-rmse:0.448769	test-rmse:0.44904
[267]	train-rmse:0.448755	test-rmse:0.449027
[268]	train-rmse:0.448739	test-rmse:0.44901
[269]	train-rmse:0.448726	test-rmse:0.448998
[270]	train-rmse:0.44871	test-rmse:0.448983
[271]	train-rmse:0.448695	test-rmse:0.448969
[272]	train-rmse:0.448683	test-rmse:0.448958
[273]	train-rmse:0.448665	test-rmse:0.44894
[274]	train-rmse:0.448644	test-rmse:0.448921
[275]	train-rmse:0.448624	test-rmse:0.448902
[276]	train-rmse:0.448607	test-rmse:0.448885
[277]	train-rmse:0.448595	test-rmse:0.448874
[278]	train-rmse:0.448578	test-rmse:0.448858
[279]	train-rmse:0.448556	test-rmse:0.448837
[280]	train-rmse:0.448542	test-rmse:0.448824
[281]	train-rmse:0.448529	test-rmse:0.448812
[282]	train-rmse:0.448518	test-rmse:0.448801
[283]	train-rmse:0.448504	test-rmse:0.448788
[284]	train-rmse:0.44849	test-rmse:0.448776
[285]	train-rmse:0.448475	test-rmse:0.448761
[286]	train-rmse:0.44846	test-rmse:0.448747
[287]	train-rmse:0.448446	test-rmse:0.448734
[288]	train-rmse:0.448431	test-rmse:0.44872
[289]	train-rmse:0.448412	test-rmse:0.448703
[290]	train-rmse:0.448396	test-rmse:0.448688
[291]	train-rmse:0.448381	test-rmse:0.448674
[292]	train-rmse:0.44837	test-rmse:0.448664
[293]	train-rmse:0.448356	test-rmse:0.44865
[294]	train-rmse:0.448342	test-rmse:0.448638
[295]	train-rmse:0.448329	test-rmse:0.448625
[296]	train-rmse:0.448313	test-rmse:0.44861
[297]	train-rmse:0.448298	test-rmse:0.448596
[298]	train-rmse:0.448287	test-rmse:0.448585
[299]	train-rmse:0.448274	test-rmse:0.448573
[300]	train-rmse:0.448258	test-rmse:0.448558
[301]	train-rmse:0.448242	test-rmse:0.448542
[302]	train-rmse:0.448229	test-rmse:0.448531
[303]	train-rmse:0.448215	test-rmse:0.448518
[304]	train-rmse:0.448205	test-rmse:0.448508
[305]	train-rmse:0.448189	test-rmse:0.448493
[306]	train-rmse:0.448177	test-rmse:0.448482
[307]	train-rmse:0.448164	test-rmse:0.448469
[308]	train-rmse:0.448153	test-rmse:0.448459
[309]	train-rmse:0.448143	test-rmse:0.44845
[310]	train-rmse:0.44813	test-rmse:0.448437
[311]	train-rmse:0.448119	test-rmse:0.448427
[312]	train-rmse:0.448108	test-rmse:0.448417
[313]	train-rmse:0.448095	test-rmse:0.448405
[314]	train-rmse:0.448083	test-rmse:0.448393
[315]	train-rmse:0.448072	test-rmse:0.448383
[316]	train-rmse:0.44806	test-rmse:0.448372
[317]	train-rmse:0.448051	test-rmse:0.448363
[318]	train-rmse:0.448035	test-rmse:0.448348
[319]	train-rmse:0.44802	test-rmse:0.448333
[320]	train-rmse:0.448004	test-rmse:0.448318
[321]	train-rmse:0.447994	test-rmse:0.448309
[322]	train-rmse:0.447981	test-rmse:0.448296
[323]	train-rmse:0.447971	test-rmse:0.448287
[324]	train-rmse:0.44796	test-rmse:0.448277
[325]	train-rmse:0.447946	test-rmse:0.448264
[326]	train-rmse:0.447937	test-rmse:0.448255
[327]	train-rmse:0.447924	test-rmse:0.448244
[328]	train-rmse:0.447908	test-rmse:0.448229
[329]	train-rmse:0.447896	test-rmse:0.448217
[330]	train-rmse:0.447887	test-rmse:0.448209
[331]	train-rmse:0.447871	test-rmse:0.448193
[332]	train-rmse:0.44786	test-rmse:0.448183
[333]	train-rmse:0.447848	test-rmse:0.448172
[334]	train-rmse:0.447837	test-rmse:0.448161
[335]	train-rmse:0.447829	test-rmse:0.448154
[336]	train-rmse:0.447819	test-rmse:0.448145
[337]	train-rmse:0.447807	test-rmse:0.448134
[338]	train-rmse:0.447797	test-rmse:0.448125
[339]	train-rmse:0.447789	test-rmse:0.448118
[340]	train-rmse:0.447781	test-rmse:0.448111
[341]	train-rmse:0.447771	test-rmse:0.448102
[342]	train-rmse:0.447759	test-rmse:0.448091
[343]	train-rmse:0.447748	test-rmse:0.448081
[344]	train-rmse:0.447731	test-rmse:0.448066
[345]	train-rmse:0.447722	test-rmse:0.448058
[346]	train-rmse:0.447715	test-rmse:0.448051
[347]	train-rmse:0.447699	test-rmse:0.448036
[348]	train-rmse:0.44769	test-rmse:0.448028
[349]	train-rmse:0.447682	test-rmse:0.44802
[350]	train-rmse:0.447671	test-rmse:0.44801
[351]	train-rmse:0.447659	test-rmse:0.447999
[352]	train-rmse:0.447645	test-rmse:0.447987
[353]	train-rmse:0.447634	test-rmse:0.447976
[354]	train-rmse:0.44762	test-rmse:0.447962
[355]	train-rmse:0.447609	test-rmse:0.447953
[356]	train-rmse:0.447596	test-rmse:0.447941
[357]	train-rmse:0.447586	test-rmse:0.447931
[358]	train-rmse:0.447575	test-rmse:0.447922
[359]	train-rmse:0.447565	test-rmse:0.447912
[360]	train-rmse:0.447554	test-rmse:0.447902
[361]	train-rmse:0.447544	test-rmse:0.447894
[362]	train-rmse:0.447537	test-rmse:0.447887
[363]	train-rmse:0.447526	test-rmse:0.447877
[364]	train-rmse:0.447517	test-rmse:0.447868
[365]	train-rmse:0.447508	test-rmse:0.447861
[366]	train-rmse:0.447496	test-rmse:0.44785
[367]	train-rmse:0.447489	test-rmse:0.447843
[368]	train-rmse:0.447477	test-rmse:0.447832
[369]	train-rmse:0.447468	test-rmse:0.447825
[370]	train-rmse:0.447459	test-rmse:0.447816
[371]	train-rmse:0.447447	test-rmse:0.447805
[372]	train-rmse:0.447439	test-rmse:0.447797
[373]	train-rmse:0.447428	test-rmse:0.447787
[374]	train-rmse:0.447413	test-rmse:0.447773
[375]	train-rmse:0.447402	test-rmse:0.447763
[376]	train-rmse:0.447392	test-rmse:0.447753
[377]	train-rmse:0.447379	test-rmse:0.44774
[378]	train-rmse:0.447367	test-rmse:0.447729
[379]	train-rmse:0.447355	test-rmse:0.447718
[380]	train-rmse:0.447346	test-rmse:0.447711
[381]	train-rmse:0.447338	test-rmse:0.447702
[382]	train-rmse:0.447329	test-rmse:0.447695
[383]	train-rmse:0.447321	test-rmse:0.447687
[384]	train-rmse:0.447312	test-rmse:0.447679
[385]	train-rmse:0.4473	test-rmse:0.447668
[386]	train-rmse:0.447291	test-rmse:0.447659
[387]	train-rmse:0.447279	test-rmse:0.447649
[388]	train-rmse:0.447267	test-rmse:0.447636
[389]	train-rmse:0.447257	test-rmse:0.447628
[390]	train-rmse:0.447247	test-rmse:0.447619
[391]	train-rmse:0.447237	test-rmse:0.447609
[392]	train-rmse:0.447227	test-rmse:0.4476
[393]	train-rmse:0.447217	test-rmse:0.447592
[394]	train-rmse:0.447207	test-rmse:0.447583
[395]	train-rmse:0.447191	test-rmse:0.447567
[396]	train-rmse:0.44718	test-rmse:0.447557
[397]	train-rmse:0.447172	test-rmse:0.44755
[398]	train-rmse:0.447162	test-rmse:0.447541
[399]	train-rmse:0.447155	test-rmse:0.447534
[400]	train-rmse:0.447143	test-rmse:0.447524
[401]	train-rmse:0.447137	test-rmse:0.447519
[402]	train-rmse:0.447127	test-rmse:0.447509
[403]	train-rmse:0.447116	test-rmse:0.4475
[404]	train-rmse:0.447107	test-rmse:0.447492
[405]	train-rmse:0.447101	test-rmse:0.447486
[406]	train-rmse:0.447094	test-rmse:0.44748
[407]	train-rmse:0.447085	test-rmse:0.447473
[408]	train-rmse:0.447076	test-rmse:0.447464
[409]	train-rmse:0.447068	test-rmse:0.447457
[410]	train-rmse:0.447058	test-rmse:0.447448
[411]	train-rmse:0.447052	test-rmse:0.447443
[412]	train-rmse:0.447045	test-rmse:0.447437
[413]	train-rmse:0.447036	test-rmse:0.447428
[414]	train-rmse:0.447027	test-rmse:0.44742
[415]	train-rmse:0.447019	test-rmse:0.447413
[416]	train-rmse:0.447008	test-rmse:0.447403
[417]	train-rmse:0.447001	test-rmse:0.447397
[418]	train-rmse:0.446993	test-rmse:0.44739
[419]	train-rmse:0.446984	test-rmse:0.447381
[420]	train-rmse:0.446978	test-rmse:0.447376
[421]	train-rmse:0.446968	test-rmse:0.447368
[422]	train-rmse:0.446959	test-rmse:0.447359
[423]	train-rmse:0.44695	test-rmse:0.447351
[424]	train-rmse:0.446942	test-rmse:0.447344
[425]	train-rmse:0.446932	test-rmse:0.447335
[426]	train-rmse:0.446924	test-rmse:0.447328
[427]	train-rmse:0.446916	test-rmse:0.447321
[428]	train-rmse:0.446907	test-rmse:0.447313
[429]	train-rmse:0.446895	test-rmse:0.447301
[430]	train-rmse:0.446887	test-rmse:0.447293
[431]	train-rmse:0.446881	test-rmse:0.447288
[432]	train-rmse:0.446872	test-rmse:0.447281
[433]	train-rmse:0.446865	test-rmse:0.447275
[434]	train-rmse:0.446858	test-rmse:0.447268
[435]	train-rmse:0.44685	test-rmse:0.44726
[436]	train-rmse:0.446842	test-rmse:0.447254
[437]	train-rmse:0.446831	test-rmse:0.447243
[438]	train-rmse:0.446823	test-rmse:0.447236
[439]	train-rmse:0.446815	test-rmse:0.447229
[440]	train-rmse:0.446808	test-rmse:0.447222
[441]	train-rmse:0.446795	test-rmse:0.447211
[442]	train-rmse:0.446788	test-rmse:0.447204
[443]	train-rmse:0.446782	test-rmse:0.447199
[444]	train-rmse:0.446776	test-rmse:0.447193
[445]	train-rmse:0.446768	test-rmse:0.447186
[446]	train-rmse:0.44676	test-rmse:0.447179
[447]	train-rmse:0.446754	test-rmse:0.447174
[448]	train-rmse:0.446747	test-rmse:0.447168
[449]	train-rmse:0.44674	test-rmse:0.447161
[450]	train-rmse:0.446732	test-rmse:0.447154
[451]	train-rmse:0.446725	test-rmse:0.447148
[452]	train-rmse:0.446719	test-rmse:0.447142
[453]	train-rmse:0.446709	test-rmse:0.447133
[454]	train-rmse:0.446699	test-rmse:0.447124
[455]	train-rmse:0.446686	test-rmse:0.447112
[456]	train-rmse:0.44668	test-rmse:0.447106
[457]	train-rmse:0.446669	test-rmse:0.447096
[458]	train-rmse:0.446658	test-rmse:0.447085
[459]	train-rmse:0.446652	test-rmse:0.447079
[460]	train-rmse:0.446643	test-rmse:0.447071
[461]	train-rmse:0.446636	test-rmse:0.447066
[462]	train-rmse:0.446628	test-rmse:0.447059
[463]	train-rmse:0.446618	test-rmse:0.447049
[464]	train-rmse:0.446612	test-rmse:0.447044
[465]	train-rmse:0.446605	test-rmse:0.447038
[466]	train-rmse:0.446598	test-rmse:0.447032
[467]	train-rmse:0.446591	test-rmse:0.447026
[468]	train-rmse:0.446583	test-rmse:0.447019
[469]	train-rmse:0.446576	test-rmse:0.447012
[470]	train-rmse:0.44657	test-rmse:0.447007
[471]	train-rmse:0.446561	test-rmse:0.446999
[472]	train-rmse:0.446549	test-rmse:0.446989
[473]	train-rmse:0.446541	test-rmse:0.446982
[474]	train-rmse:0.446536	test-rmse:0.446978
[475]	train-rmse:0.446532	test-rmse:0.446974
[476]	train-rmse:0.446521	test-rmse:0.446964
[477]	train-rmse:0.446515	test-rmse:0.446959
[478]	train-rmse:0.446508	test-rmse:0.446952
[479]	train-rmse:0.446501	test-rmse:0.446946
[480]	train-rmse:0.446492	test-rmse:0.446938
[481]	train-rmse:0.446482	test-rmse:0.446928
[482]	train-rmse:0.446474	test-rmse:0.446921
[483]	train-rmse:0.446465	test-rmse:0.446912
[484]	train-rmse:0.446456	test-rmse:0.446903
[485]	train-rmse:0.446445	test-rmse:0.446894
[486]	train-rmse:0.446437	test-rmse:0.446887
[487]	train-rmse:0.446431	test-rmse:0.446882
[488]	train-rmse:0.446424	test-rmse:0.446876
[489]	train-rmse:0.446416	test-rmse:0.446868
[490]	train-rmse:0.446409	test-rmse:0.446862
[491]	train-rmse:0.446398	test-rmse:0.446852
[492]	train-rmse:0.446388	test-rmse:0.446842
[493]	train-rmse:0.446381	test-rmse:0.446836
[494]	train-rmse:0.446375	test-rmse:0.44683
[495]	train-rmse:0.446365	test-rmse:0.446822
[496]	train-rmse:0.446353	test-rmse:0.44681
[497]	train-rmse:0.446344	test-rmse:0.446802
[498]	train-rmse:0.446336	test-rmse:0.446794
[499]	train-rmse:0.446326	test-rmse:0.446785
[500]	train-rmse:0.446316	test-rmse:0.446776
[501]	train-rmse:0.446307	test-rmse:0.446768
[502]	train-rmse:0.446296	test-rmse:0.446758
[503]	train-rmse:0.44629	test-rmse:0.446753
[504]	train-rmse:0.446283	test-rmse:0.446746
[505]	train-rmse:0.446275	test-rmse:0.446739
[506]	train-rmse:0.446268	test-rmse:0.446734
[507]	train-rmse:0.446262	test-rmse:0.446728
[508]	train-rmse:0.446255	test-rmse:0.446721
[509]	train-rmse:0.446249	test-rmse:0.446717
[510]	train-rmse:0.446244	test-rmse:0.446713
[511]	train-rmse:0.446235	test-rmse:0.446704
[512]	train-rmse:0.446229	test-rmse:0.446699
[513]	train-rmse:0.446224	test-rmse:0.446695
[514]	train-rmse:0.446217	test-rmse:0.446689
[515]	train-rmse:0.44621	test-rmse:0.446683
[516]	train-rmse:0.446205	test-rmse:0.446678
[517]	train-rmse:0.446198	test-rmse:0.446672
[518]	train-rmse:0.446193	test-rmse:0.446667
[519]	train-rmse:0.446188	test-rmse:0.446663
[520]	train-rmse:0.446181	test-rmse:0.446657
[521]	train-rmse:0.446172	test-rmse:0.446649
[522]	train-rmse:0.446167	test-rmse:0.446644
[523]	train-rmse:0.446159	test-rmse:0.446636
[524]	train-rmse:0.446151	test-rmse:0.446629
[525]	train-rmse:0.446146	test-rmse:0.446624
[526]	train-rmse:0.44614	test-rmse:0.44662
[527]	train-rmse:0.446135	test-rmse:0.446615
[528]	train-rmse:0.446129	test-rmse:0.446611
[529]	train-rmse:0.446123	test-rmse:0.446604
[530]	train-rmse:0.446115	test-rmse:0.446597
[531]	train-rmse:0.446108	test-rmse:0.446591
[532]	train-rmse:0.4461	test-rmse:0.446584
[533]	train-rmse:0.446097	test-rmse:0.446581
[534]	train-rmse:0.44609	test-rmse:0.446576
[535]	train-rmse:0.446085	test-rmse:0.446571
[536]	train-rmse:0.446078	test-rmse:0.446566
[537]	train-rmse:0.446072	test-rmse:0.446561
[538]	train-rmse:0.446066	test-rmse:0.446556
[539]	train-rmse:0.44606	test-rmse:0.44655
[540]	train-rmse:0.446051	test-rmse:0.446542
[541]	train-rmse:0.446045	test-rmse:0.446537
[542]	train-rmse:0.446036	test-rmse:0.446528
[543]	train-rmse:0.446029	test-rmse:0.446523
[544]	train-rmse:0.446019	test-rmse:0.446513
[545]	train-rmse:0.446012	test-rmse:0.446507
[546]	train-rmse:0.446005	test-rmse:0.446502
[547]	train-rmse:0.445998	test-rmse:0.446494
[548]	train-rmse:0.44599	test-rmse:0.446487
[549]	train-rmse:0.445982	test-rmse:0.44648
[550]	train-rmse:0.445978	test-rmse:0.446477
[551]	train-rmse:0.445969	test-rmse:0.446469
[552]	train-rmse:0.445961	test-rmse:0.446462
[553]	train-rmse:0.445956	test-rmse:0.446458
[554]	train-rmse:0.445949	test-rmse:0.446453
[555]	train-rmse:0.44594	test-rmse:0.446444
[556]	train-rmse:0.445933	test-rmse:0.446438
[557]	train-rmse:0.445927	test-rmse:0.446433
[558]	train-rmse:0.44592	test-rmse:0.446427
[559]	train-rmse:0.445916	test-rmse:0.446424
[560]	train-rmse:0.445912	test-rmse:0.44642
[561]	train-rmse:0.445904	test-rmse:0.446413
[562]	train-rmse:0.445897	test-rmse:0.446408
[563]	train-rmse:0.445891	test-rmse:0.446402
[564]	train-rmse:0.445883	test-rmse:0.446396
[565]	train-rmse:0.445878	test-rmse:0.446391
[566]	train-rmse:0.445872	test-rmse:0.446386
[567]	train-rmse:0.445868	test-rmse:0.446383
[568]	train-rmse:0.445863	test-rmse:0.446378
[569]	train-rmse:0.445856	test-rmse:0.446372
[570]	train-rmse:0.445852	test-rmse:0.446369
[571]	train-rmse:0.445846	test-rmse:0.446364
[572]	train-rmse:0.445841	test-rmse:0.446359
[573]	train-rmse:0.445833	test-rmse:0.446352
[574]	train-rmse:0.445827	test-rmse:0.446346
[575]	train-rmse:0.445819	test-rmse:0.44634
[576]	train-rmse:0.445814	test-rmse:0.446336
[577]	train-rmse:0.445809	test-rmse:0.446331
[578]	train-rmse:0.445804	test-rmse:0.446327
[579]	train-rmse:0.445798	test-rmse:0.446322
[580]	train-rmse:0.445789	test-rmse:0.446314
[581]	train-rmse:0.445783	test-rmse:0.446309
[582]	train-rmse:0.445778	test-rmse:0.446305
[583]	train-rmse:0.445772	test-rmse:0.4463
[584]	train-rmse:0.445766	test-rmse:0.446295
[585]	train-rmse:0.445759	test-rmse:0.446289
[586]	train-rmse:0.445753	test-rmse:0.446284
[587]	train-rmse:0.445748	test-rmse:0.446279
[588]	train-rmse:0.445742	test-rmse:0.446274
[589]	train-rmse:0.445738	test-rmse:0.446271
[590]	train-rmse:0.445732	test-rmse:0.446266
[591]	train-rmse:0.445726	test-rmse:0.446261
[592]	train-rmse:0.445717	test-rmse:0.446253
[593]	train-rmse:0.445709	test-rmse:0.446246
[594]	train-rmse:0.445705	test-rmse:0.446242
[595]	train-rmse:0.445699	test-rmse:0.446238
[596]	train-rmse:0.445694	test-rmse:0.446233
[597]	train-rmse:0.445689	test-rmse:0.44623
[598]	train-rmse:0.445683	test-rmse:0.446225
[599]	train-rmse:0.445677	test-rmse:0.446219
[600]	train-rmse:0.445672	test-rmse:0.446215
[601]	train-rmse:0.445664	test-rmse:0.446208
[602]	train-rmse:0.445659	test-rmse:0.446204
[603]	train-rmse:0.445652	test-rmse:0.446198
[604]	train-rmse:0.445646	test-rmse:0.446192
[605]	train-rmse:0.445641	test-rmse:0.446189
[606]	train-rmse:0.445637	test-rmse:0.446185
[607]	train-rmse:0.44563	test-rmse:0.446178
[608]	train-rmse:0.445625	test-rmse:0.446175
[609]	train-rmse:0.445617	test-rmse:0.446167
[610]	train-rmse:0.445613	test-rmse:0.446165
[611]	train-rmse:0.445608	test-rmse:0.44616
[612]	train-rmse:0.445603	test-rmse:0.446156
[613]	train-rmse:0.445597	test-rmse:0.446151
[614]	train-rmse:0.445592	test-rmse:0.446147
[615]	train-rmse:0.445587	test-rmse:0.446143
[616]	train-rmse:0.445582	test-rmse:0.446138
[617]	train-rmse:0.445574	test-rmse:0.446131
[618]	train-rmse:0.445567	test-rmse:0.446125
[619]	train-rmse:0.445562	test-rmse:0.446121
[620]	train-rmse:0.445554	test-rmse:0.446114
[621]	train-rmse:0.445549	test-rmse:0.44611
[622]	train-rmse:0.445544	test-rmse:0.446106
[623]	train-rmse:0.445537	test-rmse:0.4461
[624]	train-rmse:0.445534	test-rmse:0.446098
[625]	train-rmse:0.445529	test-rmse:0.446095
[626]	train-rmse:0.445524	test-rmse:0.44609
[627]	train-rmse:0.445516	test-rmse:0.446083
[628]	train-rmse:0.445511	test-rmse:0.446078
[629]	train-rmse:0.445507	test-rmse:0.446076
[630]	train-rmse:0.445503	test-rmse:0.446073
[631]	train-rmse:0.445498	test-rmse:0.446068
[632]	train-rmse:0.44549	test-rmse:0.446061
[633]	train-rmse:0.445485	test-rmse:0.446057
[634]	train-rmse:0.445479	test-rmse:0.446053
[635]	train-rmse:0.445474	test-rmse:0.446048
[636]	train-rmse:0.445469	test-rmse:0.446043
[637]	train-rmse:0.445462	test-rmse:0.446037
[638]	train-rmse:0.445458	test-rmse:0.446034
[639]	train-rmse:0.445452	test-rmse:0.44603
[640]	train-rmse:0.445448	test-rmse:0.446026
[641]	train-rmse:0.445442	test-rmse:0.446022
[642]	train-rmse:0.445437	test-rmse:0.446017
[643]	train-rmse:0.44543	test-rmse:0.446011
[644]	train-rmse:0.445425	test-rmse:0.446006
[645]	train-rmse:0.445419	test-rmse:0.446002
[646]	train-rmse:0.445415	test-rmse:0.445998
[647]	train-rmse:0.445408	test-rmse:0.445992
[648]	train-rmse:0.445404	test-rmse:0.445989
[649]	train-rmse:0.445397	test-rmse:0.445984
[650]	train-rmse:0.445392	test-rmse:0.445979
[651]	train-rmse:0.445388	test-rmse:0.445975
[652]	train-rmse:0.445382	test-rmse:0.445971
[653]	train-rmse:0.445379	test-rmse:0.445968
[654]	train-rmse:0.445374	test-rmse:0.445965
[655]	train-rmse:0.445366	test-rmse:0.445957
[656]	train-rmse:0.445361	test-rmse:0.445953
[657]	train-rmse:0.445357	test-rmse:0.44595
[658]	train-rmse:0.445348	test-rmse:0.445942
[659]	train-rmse:0.445342	test-rmse:0.445937
[660]	train-rmse:0.445337	test-rmse:0.445933
[661]	train-rmse:0.445331	test-rmse:0.445927
[662]	train-rmse:0.445324	test-rmse:0.445921
[663]	train-rmse:0.445319	test-rmse:0.445917
[664]	train-rmse:0.445309	test-rmse:0.445908
[665]	train-rmse:0.445304	test-rmse:0.445904
[666]	train-rmse:0.445297	test-rmse:0.445897
[667]	train-rmse:0.445291	test-rmse:0.445892
[668]	train-rmse:0.445287	test-rmse:0.445889
[669]	train-rmse:0.445281	test-rmse:0.445884
[670]	train-rmse:0.445277	test-rmse:0.445881
[671]	train-rmse:0.445272	test-rmse:0.445877
[672]	train-rmse:0.445267	test-rmse:0.445873
[673]	train-rmse:0.445261	test-rmse:0.445868
[674]	train-rmse:0.445257	test-rmse:0.445864
[675]	train-rmse:0.445253	test-rmse:0.445862
[676]	train-rmse:0.445248	test-rmse:0.445858
[677]	train-rmse:0.445243	test-rmse:0.445853
[678]	train-rmse:0.445239	test-rmse:0.44585
[679]	train-rmse:0.445235	test-rmse:0.445847
[680]	train-rmse:0.445231	test-rmse:0.445844
[681]	train-rmse:0.445225	test-rmse:0.445838
[682]	train-rmse:0.445219	test-rmse:0.445833
[683]	train-rmse:0.445213	test-rmse:0.445827
[684]	train-rmse:0.445204	test-rmse:0.445819
[685]	train-rmse:0.445201	test-rmse:0.445817
[686]	train-rmse:0.445194	test-rmse:0.445811
[687]	train-rmse:0.445189	test-rmse:0.445807
[688]	train-rmse:0.445185	test-rmse:0.445803
[689]	train-rmse:0.445179	test-rmse:0.445798
[690]	train-rmse:0.445173	test-rmse:0.445793
[691]	train-rmse:0.445171	test-rmse:0.445792
[692]	train-rmse:0.445165	test-rmse:0.445787
[693]	train-rmse:0.445159	test-rmse:0.445782
[694]	train-rmse:0.445156	test-rmse:0.445779
[695]	train-rmse:0.445151	test-rmse:0.445775
[696]	train-rmse:0.445146	test-rmse:0.44577
[697]	train-rmse:0.445141	test-rmse:0.445767
[698]	train-rmse:0.445136	test-rmse:0.445762
[699]	train-rmse:0.44513	test-rmse:0.445757
[700]	train-rmse:0.445125	test-rmse:0.445753
[701]	train-rmse:0.445118	test-rmse:0.445747
[702]	train-rmse:0.445111	test-rmse:0.44574
[703]	train-rmse:0.445105	test-rmse:0.445735
[704]	train-rmse:0.4451	test-rmse:0.445731
[705]	train-rmse:0.445097	test-rmse:0.445729
[706]	train-rmse:0.445092	test-rmse:0.445725
[707]	train-rmse:0.445088	test-rmse:0.445722
[708]	train-rmse:0.445083	test-rmse:0.445717
[709]	train-rmse:0.445079	test-rmse:0.445714
[710]	train-rmse:0.445074	test-rmse:0.445711
[711]	train-rmse:0.44507	test-rmse:0.445707
[712]	train-rmse:0.445067	test-rmse:0.445705
[713]	train-rmse:0.445061	test-rmse:0.4457
[714]	train-rmse:0.445056	test-rmse:0.445696
[715]	train-rmse:0.445052	test-rmse:0.445693
[716]	train-rmse:0.445049	test-rmse:0.44569
[717]	train-rmse:0.445045	test-rmse:0.445688
[718]	train-rmse:0.445042	test-rmse:0.445684
[719]	train-rmse:0.445037	test-rmse:0.44568
[720]	train-rmse:0.445033	test-rmse:0.445677
[721]	train-rmse:0.445029	test-rmse:0.445674
[722]	train-rmse:0.445025	test-rmse:0.445671
[723]	train-rmse:0.44502	test-rmse:0.445666
[724]	train-rmse:0.445016	test-rmse:0.445663
[725]	train-rmse:0.44501	test-rmse:0.445658
[726]	train-rmse:0.445006	test-rmse:0.445655
[727]	train-rmse:0.445001	test-rmse:0.445651
[728]	train-rmse:0.444997	test-rmse:0.445648
[729]	train-rmse:0.444992	test-rmse:0.445644
[730]	train-rmse:0.444988	test-rmse:0.445641
[731]	train-rmse:0.444984	test-rmse:0.445638
[732]	train-rmse:0.444978	test-rmse:0.445632
[733]	train-rmse:0.444973	test-rmse:0.445628
[734]	train-rmse:0.444967	test-rmse:0.445624
[735]	train-rmse:0.444963	test-rmse:0.445621
[736]	train-rmse:0.444959	test-rmse:0.445617
[737]	train-rmse:0.444953	test-rmse:0.445612
[738]	train-rmse:0.444948	test-rmse:0.445608
[739]	train-rmse:0.444945	test-rmse:0.445606
[740]	train-rmse:0.444941	test-rmse:0.445603
[741]	train-rmse:0.444937	test-rmse:0.4456
[742]	train-rmse:0.444932	test-rmse:0.445596
[743]	train-rmse:0.444927	test-rmse:0.445591
[744]	train-rmse:0.444921	test-rmse:0.445586
[745]	train-rmse:0.444917	test-rmse:0.445583
[746]	train-rmse:0.444913	test-rmse:0.44558
[747]	train-rmse:0.444909	test-rmse:0.445577
[748]	train-rmse:0.444903	test-rmse:0.445572
[749]	train-rmse:0.444897	test-rmse:0.445568
[750]	train-rmse:0.444893	test-rmse:0.445565
[751]	train-rmse:0.444888	test-rmse:0.44556
[752]	train-rmse:0.444883	test-rmse:0.445556
[753]	train-rmse:0.44488	test-rmse:0.445554
[754]	train-rmse:0.444874	test-rmse:0.445548
[755]	train-rmse:0.444869	test-rmse:0.445544
[756]	train-rmse:0.444866	test-rmse:0.445542
[757]	train-rmse:0.444862	test-rmse:0.445539
[758]	train-rmse:0.444857	test-rmse:0.445535
[759]	train-rmse:0.444853	test-rmse:0.445532
[760]	train-rmse:0.444849	test-rmse:0.445528
[761]	train-rmse:0.444847	test-rmse:0.445526
[762]	train-rmse:0.444842	test-rmse:0.445523
[763]	train-rmse:0.444837	test-rmse:0.445518
[764]	train-rmse:0.444831	test-rmse:0.445513
[765]	train-rmse:0.444828	test-rmse:0.44551
[766]	train-rmse:0.444821	test-rmse:0.445504
[767]	train-rmse:0.444813	test-rmse:0.445497
[768]	train-rmse:0.444809	test-rmse:0.445494
[769]	train-rmse:0.444804	test-rmse:0.44549
[770]	train-rmse:0.4448	test-rmse:0.445487
[771]	train-rmse:0.444794	test-rmse:0.445482
[772]	train-rmse:0.444789	test-rmse:0.445477
[773]	train-rmse:0.444785	test-rmse:0.445474
[774]	train-rmse:0.44478	test-rmse:0.44547
[775]	train-rmse:0.444777	test-rmse:0.445468
[776]	train-rmse:0.444771	test-rmse:0.445463
[777]	train-rmse:0.444767	test-rmse:0.44546
[778]	train-rmse:0.444762	test-rmse:0.445456
[779]	train-rmse:0.444759	test-rmse:0.445454
[780]	train-rmse:0.444755	test-rmse:0.445451
[781]	train-rmse:0.44475	test-rmse:0.445446
[782]	train-rmse:0.444747	test-rmse:0.445445
[783]	train-rmse:0.444743	test-rmse:0.445442
[784]	train-rmse:0.44474	test-rmse:0.445439
[785]	train-rmse:0.444735	test-rmse:0.445436
[786]	train-rmse:0.444729	test-rmse:0.44543
[787]	train-rmse:0.444725	test-rmse:0.445427
[788]	train-rmse:0.44472	test-rmse:0.445423
[789]	train-rmse:0.444716	test-rmse:0.44542
[790]	train-rmse:0.444712	test-rmse:0.445416
[791]	train-rmse:0.444708	test-rmse:0.445413
[792]	train-rmse:0.444702	test-rmse:0.445408
[793]	train-rmse:0.444698	test-rmse:0.445405
[794]	train-rmse:0.444695	test-rmse:0.445403
[795]	train-rmse:0.444692	test-rmse:0.445401
[796]	train-rmse:0.444689	test-rmse:0.445399
[797]	train-rmse:0.444684	test-rmse:0.445395
[798]	train-rmse:0.444681	test-rmse:0.445392
[799]	train-rmse:0.444675	test-rmse:0.445387
[800]	train-rmse:0.44467	test-rmse:0.445383
[801]	train-rmse:0.444666	test-rmse:0.44538
[802]	train-rmse:0.444659	test-rmse:0.445375
[803]	train-rmse:0.444655	test-rmse:0.445371
[804]	train-rmse:0.44465	test-rmse:0.445368
[805]	train-rmse:0.444645	test-rmse:0.445363
[806]	train-rmse:0.444638	test-rmse:0.445357
[807]	train-rmse:0.444635	test-rmse:0.445355
[808]	train-rmse:0.44463	test-rmse:0.445351
[809]	train-rmse:0.444625	test-rmse:0.445346
[810]	train-rmse:0.44462	test-rmse:0.445344
[811]	train-rmse:0.444616	test-rmse:0.44534
[812]	train-rmse:0.444612	test-rmse:0.445337
[813]	train-rmse:0.444608	test-rmse:0.445334
[814]	train-rmse:0.444602	test-rmse:0.445328
[815]	train-rmse:0.444597	test-rmse:0.445324
[816]	train-rmse:0.444595	test-rmse:0.445322
[817]	train-rmse:0.444589	test-rmse:0.445317
[818]	train-rmse:0.444584	test-rmse:0.445313
[819]	train-rmse:0.44458	test-rmse:0.44531
[820]	train-rmse:0.444575	test-rmse:0.445306
[821]	train-rmse:0.44457	test-rmse:0.445301
[822]	train-rmse:0.444562	test-rmse:0.445294
[823]	train-rmse:0.444558	test-rmse:0.445291
[824]	train-rmse:0.444554	test-rmse:0.445288
[825]	train-rmse:0.44455	test-rmse:0.445284
[826]	train-rmse:0.444545	test-rmse:0.445279
[827]	train-rmse:0.444541	test-rmse:0.445276
[828]	train-rmse:0.444537	test-rmse:0.445273
[829]	train-rmse:0.444532	test-rmse:0.44527
[830]	train-rmse:0.444529	test-rmse:0.445267
[831]	train-rmse:0.444525	test-rmse:0.445265
[832]	train-rmse:0.444522	test-rmse:0.445262
[833]	train-rmse:0.444518	test-rmse:0.445259
[834]	train-rmse:0.444513	test-rmse:0.445255
[835]	train-rmse:0.44451	test-rmse:0.445253
[836]	train-rmse:0.444507	test-rmse:0.445251
[837]	train-rmse:0.444504	test-rmse:0.445248
[838]	train-rmse:0.4445	test-rmse:0.445245
[839]	train-rmse:0.444496	test-rmse:0.445242
[840]	train-rmse:0.444493	test-rmse:0.44524
[841]	train-rmse:0.444488	test-rmse:0.445237
[842]	train-rmse:0.444484	test-rmse:0.445233
[843]	train-rmse:0.444481	test-rmse:0.44523
[844]	train-rmse:0.444477	test-rmse:0.445227
[845]	train-rmse:0.444473	test-rmse:0.445225
[846]	train-rmse:0.444469	test-rmse:0.445221
[847]	train-rmse:0.444464	test-rmse:0.445218
[848]	train-rmse:0.444461	test-rmse:0.445216
[849]	train-rmse:0.444456	test-rmse:0.445211
[850]	train-rmse:0.444453	test-rmse:0.445208
[851]	train-rmse:0.444449	test-rmse:0.445206
[852]	train-rmse:0.444443	test-rmse:0.4452
[853]	train-rmse:0.444439	test-rmse:0.445197
[854]	train-rmse:0.444435	test-rmse:0.445194
[855]	train-rmse:0.444431	test-rmse:0.445191
[856]	train-rmse:0.444426	test-rmse:0.445185
[857]	train-rmse:0.444423	test-rmse:0.445183
[858]	train-rmse:0.444416	test-rmse:0.445178
[859]	train-rmse:0.444411	test-rmse:0.445173
[860]	train-rmse:0.444407	test-rmse:0.44517
[861]	train-rmse:0.444404	test-rmse:0.445168
[862]	train-rmse:0.444402	test-rmse:0.445167
[863]	train-rmse:0.444398	test-rmse:0.445164
[864]	train-rmse:0.444394	test-rmse:0.445161
[865]	train-rmse:0.44439	test-rmse:0.445158
[866]	train-rmse:0.444386	test-rmse:0.445154
[867]	train-rmse:0.444383	test-rmse:0.445153
[868]	train-rmse:0.44438	test-rmse:0.44515
[869]	train-rmse:0.444375	test-rmse:0.445147
[870]	train-rmse:0.444371	test-rmse:0.445144
[871]	train-rmse:0.444368	test-rmse:0.445141
[872]	train-rmse:0.444364	test-rmse:0.445137
[873]	train-rmse:0.44436	test-rmse:0.445135
[874]	train-rmse:0.444356	test-rmse:0.445132
[875]	train-rmse:0.44435	test-rmse:0.445127
[876]	train-rmse:0.444343	test-rmse:0.44512
[877]	train-rmse:0.44434	test-rmse:0.445118
[878]	train-rmse:0.444337	test-rmse:0.445115
[879]	train-rmse:0.444333	test-rmse:0.445112
[880]	train-rmse:0.444328	test-rmse:0.445108
[881]	train-rmse:0.444325	test-rmse:0.445106
[882]	train-rmse:0.444321	test-rmse:0.445103
[883]	train-rmse:0.444316	test-rmse:0.445098
[884]	train-rmse:0.444312	test-rmse:0.445095
[885]	train-rmse:0.444308	test-rmse:0.445092
[886]	train-rmse:0.444302	test-rmse:0.445087
[887]	train-rmse:0.444299	test-rmse:0.445085
[888]	train-rmse:0.444295	test-rmse:0.445081
[889]	train-rmse:0.444292	test-rmse:0.445079
[890]	train-rmse:0.444287	test-rmse:0.445075
[891]	train-rmse:0.444283	test-rmse:0.445071
[892]	train-rmse:0.444279	test-rmse:0.445068
[893]	train-rmse:0.444275	test-rmse:0.445066
[894]	train-rmse:0.444272	test-rmse:0.445064
[895]	train-rmse:0.444269	test-rmse:0.445062
[896]	train-rmse:0.444265	test-rmse:0.445058
[897]	train-rmse:0.444262	test-rmse:0.445056
[898]	train-rmse:0.444258	test-rmse:0.445054
[899]	train-rmse:0.444255	test-rmse:0.445052
[900]	train-rmse:0.444253	test-rmse:0.445051
[901]	train-rmse:0.444248	test-rmse:0.445047
[902]	train-rmse:0.444246	test-rmse:0.445045
[903]	train-rmse:0.444243	test-rmse:0.445043
[904]	train-rmse:0.44424	test-rmse:0.445041
[905]	train-rmse:0.444234	test-rmse:0.445036
[906]	train-rmse:0.444229	test-rmse:0.445032
[907]	train-rmse:0.444226	test-rmse:0.44503
[908]	train-rmse:0.444223	test-rmse:0.445027
[909]	train-rmse:0.44422	test-rmse:0.445025
[910]	train-rmse:0.444215	test-rmse:0.44502
[911]	train-rmse:0.444212	test-rmse:0.445018
[912]	train-rmse:0.444207	test-rmse:0.445014
[913]	train-rmse:0.444202	test-rmse:0.44501
[914]	train-rmse:0.444199	test-rmse:0.445008
[915]	train-rmse:0.444197	test-rmse:0.445007
[916]	train-rmse:0.444193	test-rmse:0.445004
[917]	train-rmse:0.444188	test-rmse:0.445
[918]	train-rmse:0.444185	test-rmse:0.444998
[919]	train-rmse:0.444181	test-rmse:0.444994
[920]	train-rmse:0.444177	test-rmse:0.444991
[921]	train-rmse:0.444175	test-rmse:0.44499
[922]	train-rmse:0.44417	test-rmse:0.444987
[923]	train-rmse:0.444167	test-rmse:0.444985
[924]	train-rmse:0.444163	test-rmse:0.444981
[925]	train-rmse:0.44416	test-rmse:0.444979
[926]	train-rmse:0.444155	test-rmse:0.444976
[927]	train-rmse:0.444151	test-rmse:0.444973
[928]	train-rmse:0.444147	test-rmse:0.44497
[929]	train-rmse:0.444144	test-rmse:0.444967
[930]	train-rmse:0.44414	test-rmse:0.444965
[931]	train-rmse:0.444135	test-rmse:0.44496
[932]	train-rmse:0.444132	test-rmse:0.444958
[933]	train-rmse:0.444129	test-rmse:0.444957
[934]	train-rmse:0.444128	test-rmse:0.444956
[935]	train-rmse:0.444124	test-rmse:0.444954
[936]	train-rmse:0.444121	test-rmse:0.444951
[937]	train-rmse:0.444116	test-rmse:0.444947
[938]	train-rmse:0.444113	test-rmse:0.444944
[939]	train-rmse:0.444109	test-rmse:0.444942
[940]	train-rmse:0.444106	test-rmse:0.44494
[941]	train-rmse:0.444103	test-rmse:0.444938
[942]	train-rmse:0.4441	test-rmse:0.444935
[943]	train-rmse:0.444096	test-rmse:0.444933
[944]	train-rmse:0.444092	test-rmse:0.444929
[945]	train-rmse:0.444088	test-rmse:0.444926
[946]	train-rmse:0.444084	test-rmse:0.444923
[947]	train-rmse:0.444081	test-rmse:0.444921
[948]	train-rmse:0.444079	test-rmse:0.444919
[949]	train-rmse:0.444075	test-rmse:0.444917
[950]	train-rmse:0.444072	test-rmse:0.444914
[951]	train-rmse:0.444069	test-rmse:0.444912
[952]	train-rmse:0.444064	test-rmse:0.444907
[953]	train-rmse:0.44406	test-rmse:0.444904
[954]	train-rmse:0.444055	test-rmse:0.4449
[955]	train-rmse:0.444052	test-rmse:0.444898
[956]	train-rmse:0.444047	test-rmse:0.444894
[957]	train-rmse:0.444043	test-rmse:0.44489
[958]	train-rmse:0.444039	test-rmse:0.444887
[959]	train-rmse:0.444036	test-rmse:0.444885
[960]	train-rmse:0.444032	test-rmse:0.444883
[961]	train-rmse:0.444029	test-rmse:0.44488
[962]	train-rmse:0.444025	test-rmse:0.444878
[963]	train-rmse:0.444022	test-rmse:0.444876
[964]	train-rmse:0.444018	test-rmse:0.444873
[965]	train-rmse:0.444015	test-rmse:0.44487
[966]	train-rmse:0.444009	test-rmse:0.444866
[967]	train-rmse:0.444006	test-rmse:0.444863
[968]	train-rmse:0.444004	test-rmse:0.444862
[969]	train-rmse:0.444	test-rmse:0.444859
[970]	train-rmse:0.443997	test-rmse:0.444857
[971]	train-rmse:0.443993	test-rmse:0.444853
[972]	train-rmse:0.44399	test-rmse:0.444852
[973]	train-rmse:0.443985	test-rmse:0.444847
[974]	train-rmse:0.443982	test-rmse:0.444844
[975]	train-rmse:0.443978	test-rmse:0.444842
[976]	train-rmse:0.443975	test-rmse:0.444839
[977]	train-rmse:0.443972	test-rmse:0.444838
[978]	train-rmse:0.44397	test-rmse:0.444836
[979]	train-rmse:0.443966	test-rmse:0.444833
[980]	train-rmse:0.443963	test-rmse:0.444831
[981]	train-rmse:0.44396	test-rmse:0.444829
[982]	train-rmse:0.443955	test-rmse:0.444825
[983]	train-rmse:0.443949	test-rmse:0.444819
[984]	train-rmse:0.443945	test-rmse:0.444817
[985]	train-rmse:0.443942	test-rmse:0.444814
[986]	train-rmse:0.443939	test-rmse:0.444811
[987]	train-rmse:0.443933	test-rmse:0.444808
[988]	train-rmse:0.44393	test-rmse:0.444805
[989]	train-rmse:0.443927	test-rmse:0.444803
[990]	train-rmse:0.443923	test-rmse:0.4448
[991]	train-rmse:0.44392	test-rmse:0.444798
[992]	train-rmse:0.443917	test-rmse:0.444796
[993]	train-rmse:0.443914	test-rmse:0.444794
[994]	train-rmse:0.443912	test-rmse:0.444793
[995]	train-rmse:0.443909	test-rmse:0.444791
[996]	train-rmse:0.443905	test-rmse:0.444788
[997]	train-rmse:0.4439	test-rmse:0.444784
[998]	train-rmse:0.443896	test-rmse:0.444781
[999]	train-rmse:0.443892	test-rmse:0.444778
[1000]	train-rmse:0.44389	test-rmse:0.444776
[1001]	train-rmse:0.443885	test-rmse:0.444772
[1002]	train-rmse:0.443881	test-rmse:0.444769
[1003]	train-rmse:0.443877	test-rmse:0.444767
[1004]	train-rmse:0.443874	test-rmse:0.444765
[1005]	train-rmse:0.443871	test-rmse:0.444762
[1006]	train-rmse:0.443868	test-rmse:0.44476
[1007]	train-rmse:0.443863	test-rmse:0.444756
[1008]	train-rmse:0.44386	test-rmse:0.444754
[1009]	train-rmse:0.443856	test-rmse:0.444751
[1010]	train-rmse:0.443854	test-rmse:0.44475
[1011]	train-rmse:0.443852	test-rmse:0.444748
[1012]	train-rmse:0.443849	test-rmse:0.444747
[1013]	train-rmse:0.443845	test-rmse:0.444744
[1014]	train-rmse:0.443842	test-rmse:0.444741
[1015]	train-rmse:0.443839	test-rmse:0.444739
[1016]	train-rmse:0.443835	test-rmse:0.444737
[1017]	train-rmse:0.443832	test-rmse:0.444734
[1018]	train-rmse:0.443829	test-rmse:0.444732
[1019]	train-rmse:0.443825	test-rmse:0.444729
[1020]	train-rmse:0.443823	test-rmse:0.444728
[1021]	train-rmse:0.44382	test-rmse:0.444727
[1022]	train-rmse:0.443818	test-rmse:0.444725
[1023]	train-rmse:0.443814	test-rmse:0.444722
[1024]	train-rmse:0.44381	test-rmse:0.444719
[1025]	train-rmse:0.443808	test-rmse:0.444718
[1026]	train-rmse:0.443805	test-rmse:0.444715
[1027]	train-rmse:0.443802	test-rmse:0.444713
[1028]	train-rmse:0.443799	test-rmse:0.444712
[1029]	train-rmse:0.443795	test-rmse:0.444708
[1030]	train-rmse:0.44379	test-rmse:0.444704
[1031]	train-rmse:0.443786	test-rmse:0.444701
[1032]	train-rmse:0.443784	test-rmse:0.4447
[1033]	train-rmse:0.44378	test-rmse:0.444697
[1034]	train-rmse:0.443776	test-rmse:0.444694
[1035]	train-rmse:0.443773	test-rmse:0.444692
[1036]	train-rmse:0.443771	test-rmse:0.444691
[1037]	train-rmse:0.443767	test-rmse:0.444687
[1038]	train-rmse:0.443762	test-rmse:0.444684
[1039]	train-rmse:0.443759	test-rmse:0.444681
[1040]	train-rmse:0.443757	test-rmse:0.444679
[1041]	train-rmse:0.443754	test-rmse:0.444677
[1042]	train-rmse:0.443752	test-rmse:0.444677
[1043]	train-rmse:0.44375	test-rmse:0.444675
[1044]	train-rmse:0.443748	test-rmse:0.444674
[1045]	train-rmse:0.443745	test-rmse:0.444672
[1046]	train-rmse:0.443742	test-rmse:0.44467
[1047]	train-rmse:0.443739	test-rmse:0.444668
[1048]	train-rmse:0.443735	test-rmse:0.444664
[1049]	train-rmse:0.443731	test-rmse:0.444661
[1050]	train-rmse:0.443727	test-rmse:0.444658
[1051]	train-rmse:0.443723	test-rmse:0.444655
[1052]	train-rmse:0.443719	test-rmse:0.444652
[1053]	train-rmse:0.443717	test-rmse:0.444649
[1054]	train-rmse:0.443714	test-rmse:0.444648
[1055]	train-rmse:0.443709	test-rmse:0.444644
[1056]	train-rmse:0.443707	test-rmse:0.444643
[1057]	train-rmse:0.443703	test-rmse:0.444641
[1058]	train-rmse:0.443702	test-rmse:0.44464
[1059]	train-rmse:0.443698	test-rmse:0.444637
[1060]	train-rmse:0.443695	test-rmse:0.444635
[1061]	train-rmse:0.443691	test-rmse:0.444632
[1062]	train-rmse:0.443687	test-rmse:0.444629
[1063]	train-rmse:0.443684	test-rmse:0.444627
[1064]	train-rmse:0.443682	test-rmse:0.444626
[1065]	train-rmse:0.443678	test-rmse:0.444622
[1066]	train-rmse:0.443675	test-rmse:0.44462
[1067]	train-rmse:0.443672	test-rmse:0.444618
[1068]	train-rmse:0.443669	test-rmse:0.444617
[1069]	train-rmse:0.443667	test-rmse:0.444615
[1070]	train-rmse:0.443663	test-rmse:0.444612
[1071]	train-rmse:0.44366	test-rmse:0.44461
[1072]	train-rmse:0.443655	test-rmse:0.444606
[1073]	train-rmse:0.443651	test-rmse:0.444603
[1074]	train-rmse:0.443649	test-rmse:0.444602
[1075]	train-rmse:0.443645	test-rmse:0.444599
[1076]	train-rmse:0.443641	test-rmse:0.444596
[1077]	train-rmse:0.443638	test-rmse:0.444593
[1078]	train-rmse:0.443636	test-rmse:0.444592
[1079]	train-rmse:0.443631	test-rmse:0.444588
[1080]	train-rmse:0.443628	test-rmse:0.444586
[1081]	train-rmse:0.443624	test-rmse:0.444583
[1082]	train-rmse:0.443622	test-rmse:0.444582
[1083]	train-rmse:0.44362	test-rmse:0.444581
[1084]	train-rmse:0.443617	test-rmse:0.444578
[1085]	train-rmse:0.443613	test-rmse:0.444576
[1086]	train-rmse:0.44361	test-rmse:0.444574
[1087]	train-rmse:0.443606	test-rmse:0.44457
[1088]	train-rmse:0.443602	test-rmse:0.444568
[1089]	train-rmse:0.4436	test-rmse:0.444566
[1090]	train-rmse:0.443597	test-rmse:0.444565
[1091]	train-rmse:0.443595	test-rmse:0.444563
[1092]	train-rmse:0.443592	test-rmse:0.44456
[1093]	train-rmse:0.443589	test-rmse:0.444558
[1094]	train-rmse:0.443586	test-rmse:0.444556
[1095]	train-rmse:0.443582	test-rmse:0.444553
[1096]	train-rmse:0.44358	test-rmse:0.444552
[1097]	train-rmse:0.443575	test-rmse:0.444547
[1098]	train-rmse:0.443572	test-rmse:0.444545
[1099]	train-rmse:0.443568	test-rmse:0.444542
[1100]	train-rmse:0.443563	test-rmse:0.444538
[1101]	train-rmse:0.443561	test-rmse:0.444537
[1102]	train-rmse:0.443558	test-rmse:0.444535
[1103]	train-rmse:0.443555	test-rmse:0.444533
[1104]	train-rmse:0.443551	test-rmse:0.444531
[1105]	train-rmse:0.443547	test-rmse:0.444527
[1106]	train-rmse:0.443542	test-rmse:0.444522
[1107]	train-rmse:0.443538	test-rmse:0.444519
[1108]	train-rmse:0.443533	test-rmse:0.444515
[1109]	train-rmse:0.443529	test-rmse:0.444512
[1110]	train-rmse:0.443524	test-rmse:0.444507
[1111]	train-rmse:0.44352	test-rmse:0.444505
[1112]	train-rmse:0.443516	test-rmse:0.444501
[1113]	train-rmse:0.443513	test-rmse:0.444499
[1114]	train-rmse:0.44351	test-rmse:0.444497
[1115]	train-rmse:0.443507	test-rmse:0.444495
[1116]	train-rmse:0.443503	test-rmse:0.444492
[1117]	train-rmse:0.4435	test-rmse:0.44449
[1118]	train-rmse:0.443497	test-rmse:0.444487
[1119]	train-rmse:0.443492	test-rmse:0.444483
[1120]	train-rmse:0.443489	test-rmse:0.444481
[1121]	train-rmse:0.443484	test-rmse:0.444477
[1122]	train-rmse:0.44348	test-rmse:0.444474
[1123]	train-rmse:0.443477	test-rmse:0.444472
[1124]	train-rmse:0.443473	test-rmse:0.444469
[1125]	train-rmse:0.44347	test-rmse:0.444467
[1126]	train-rmse:0.443467	test-rmse:0.444465
[1127]	train-rmse:0.443462	test-rmse:0.44446
[1128]	train-rmse:0.443458	test-rmse:0.444457
[1129]	train-rmse:0.443455	test-rmse:0.444454
[1130]	train-rmse:0.443451	test-rmse:0.444452
[1131]	train-rmse:0.443449	test-rmse:0.44445
[1132]	train-rmse:0.443446	test-rmse:0.444449
[1133]	train-rmse:0.443443	test-rmse:0.444446
[1134]	train-rmse:0.443438	test-rmse:0.444443
[1135]	train-rmse:0.443436	test-rmse:0.444442
[1136]	train-rmse:0.443434	test-rmse:0.444441
[1137]	train-rmse:0.443431	test-rmse:0.444439
[1138]	train-rmse:0.443427	test-rmse:0.444436
[1139]	train-rmse:0.443424	test-rmse:0.444434
[1140]	train-rmse:0.44342	test-rmse:0.44443
[1141]	train-rmse:0.443415	test-rmse:0.444426
[1142]	train-rmse:0.443412	test-rmse:0.444424
[1143]	train-rmse:0.443408	test-rmse:0.444422
[1144]	train-rmse:0.443405	test-rmse:0.44442
[1145]	train-rmse:0.443402	test-rmse:0.444417
[1146]	train-rmse:0.4434	test-rmse:0.444415
[1147]	train-rmse:0.443396	test-rmse:0.444413
[1148]	train-rmse:0.44339	test-rmse:0.444406
[1149]	train-rmse:0.443386	test-rmse:0.444404
[1150]	train-rmse:0.443382	test-rmse:0.444402
[1151]	train-rmse:0.443379	test-rmse:0.444399
[1152]	train-rmse:0.443378	test-rmse:0.444398
[1153]	train-rmse:0.443375	test-rmse:0.444396
[1154]	train-rmse:0.443371	test-rmse:0.444394
[1155]	train-rmse:0.443368	test-rmse:0.444392
[1156]	train-rmse:0.443366	test-rmse:0.44439
[1157]	train-rmse:0.443364	test-rmse:0.444389
[1158]	train-rmse:0.44336	test-rmse:0.444387
[1159]	train-rmse:0.443357	test-rmse:0.444385
[1160]	train-rmse:0.443354	test-rmse:0.444383
[1161]	train-rmse:0.443352	test-rmse:0.444382
[1162]	train-rmse:0.44335	test-rmse:0.444381
[1163]	train-rmse:0.443348	test-rmse:0.444379
[1164]	train-rmse:0.443345	test-rmse:0.444377
[1165]	train-rmse:0.443342	test-rmse:0.444376
[1166]	train-rmse:0.443339	test-rmse:0.444373
[1167]	train-rmse:0.443336	test-rmse:0.444372
[1168]	train-rmse:0.443333	test-rmse:0.444369
[1169]	train-rmse:0.44333	test-rmse:0.444367
[1170]	train-rmse:0.443328	test-rmse:0.444366
[1171]	train-rmse:0.443326	test-rmse:0.444365
[1172]	train-rmse:0.443323	test-rmse:0.444363
[1173]	train-rmse:0.443321	test-rmse:0.444362
[1174]	train-rmse:0.443319	test-rmse:0.444361
[1175]	train-rmse:0.443316	test-rmse:0.444358
[1176]	train-rmse:0.443313	test-rmse:0.444356
[1177]	train-rmse:0.443309	test-rmse:0.444353
[1178]	train-rmse:0.443306	test-rmse:0.444351
[1179]	train-rmse:0.443304	test-rmse:0.444349
[1180]	train-rmse:0.4433	test-rmse:0.444347
[1181]	train-rmse:0.443296	test-rmse:0.444343
[1182]	train-rmse:0.443293	test-rmse:0.444341
[1183]	train-rmse:0.443289	test-rmse:0.444338
[1184]	train-rmse:0.443287	test-rmse:0.444336
[1185]	train-rmse:0.443282	test-rmse:0.444333
[1186]	train-rmse:0.443278	test-rmse:0.444329
[1187]	train-rmse:0.443275	test-rmse:0.444327
[1188]	train-rmse:0.443271	test-rmse:0.444324
[1189]	train-rmse:0.443269	test-rmse:0.444322
[1190]	train-rmse:0.443265	test-rmse:0.444319
[1191]	train-rmse:0.443262	test-rmse:0.444317
[1192]	train-rmse:0.443258	test-rmse:0.444315
[1193]	train-rmse:0.443255	test-rmse:0.444312
[1194]	train-rmse:0.443251	test-rmse:0.44431
[1195]	train-rmse:0.443249	test-rmse:0.444308
[1196]	train-rmse:0.443246	test-rmse:0.444306
[1197]	train-rmse:0.443243	test-rmse:0.444305
[1198]	train-rmse:0.443241	test-rmse:0.444303
[1199]	train-rmse:0.443238	test-rmse:0.444302
[1200]	train-rmse:0.443236	test-rmse:0.4443
[1201]	train-rmse:0.443233	test-rmse:0.444298
[1202]	train-rmse:0.44323	test-rmse:0.444297
[1203]	train-rmse:0.443227	test-rmse:0.444294
[1204]	train-rmse:0.443221	test-rmse:0.444288
[1205]	train-rmse:0.443218	test-rmse:0.444286
[1206]	train-rmse:0.443215	test-rmse:0.444284
[1207]	train-rmse:0.443212	test-rmse:0.444281
[1208]	train-rmse:0.443209	test-rmse:0.444279
[1209]	train-rmse:0.443207	test-rmse:0.444278
[1210]	train-rmse:0.443203	test-rmse:0.444276
[1211]	train-rmse:0.443199	test-rmse:0.444272
[1212]	train-rmse:0.443196	test-rmse:0.44427
[1213]	train-rmse:0.443193	test-rmse:0.444268
[1214]	train-rmse:0.44319	test-rmse:0.444266
[1215]	train-rmse:0.443188	test-rmse:0.444265
[1216]	train-rmse:0.443186	test-rmse:0.444263
[1217]	train-rmse:0.443182	test-rmse:0.44426
[1218]	train-rmse:0.443179	test-rmse:0.444259
[1219]	train-rmse:0.443177	test-rmse:0.444257
[1220]	train-rmse:0.443174	test-rmse:0.444255
[1221]	train-rmse:0.443171	test-rmse:0.444253
[1222]	train-rmse:0.443167	test-rmse:0.44425
[1223]	train-rmse:0.443163	test-rmse:0.444247
[1224]	train-rmse:0.443161	test-rmse:0.444246
[1225]	train-rmse:0.443159	test-rmse:0.444245
[1226]	train-rmse:0.443156	test-rmse:0.444242
[1227]	train-rmse:0.443154	test-rmse:0.444241
[1228]	train-rmse:0.443151	test-rmse:0.444239
[1229]	train-rmse:0.443148	test-rmse:0.444237
[1230]	train-rmse:0.443145	test-rmse:0.444235
[1231]	train-rmse:0.443142	test-rmse:0.444233
[1232]	train-rmse:0.443139	test-rmse:0.444231
[1233]	train-rmse:0.443137	test-rmse:0.44423
[1234]	train-rmse:0.443135	test-rmse:0.444229
[1235]	train-rmse:0.443132	test-rmse:0.444227
[1236]	train-rmse:0.443129	test-rmse:0.444226
[1237]	train-rmse:0.443127	test-rmse:0.444225
[1238]	train-rmse:0.443125	test-rmse:0.444223
[1239]	train-rmse:0.44312	test-rmse:0.44422
[1240]	train-rmse:0.443119	test-rmse:0.44422
[1241]	train-rmse:0.443116	test-rmse:0.444218
[1242]	train-rmse:0.443113	test-rmse:0.444215
[1243]	train-rmse:0.44311	test-rmse:0.444213
[1244]	train-rmse:0.443105	test-rmse:0.444209
[1245]	train-rmse:0.443103	test-rmse:0.444208
[1246]	train-rmse:0.4431	test-rmse:0.444205
[1247]	train-rmse:0.443098	test-rmse:0.444205
[1248]	train-rmse:0.443096	test-rmse:0.444203
[1249]	train-rmse:0.443092	test-rmse:0.444201
[1250]	train-rmse:0.44309	test-rmse:0.4442
[1251]	train-rmse:0.443086	test-rmse:0.444196
[1252]	train-rmse:0.443084	test-rmse:0.444195
[1253]	train-rmse:0.443081	test-rmse:0.444192
[1254]	train-rmse:0.443078	test-rmse:0.44419
[1255]	train-rmse:0.443075	test-rmse:0.444188
[1256]	train-rmse:0.443072	test-rmse:0.444187
[1257]	train-rmse:0.443069	test-rmse:0.444185
[1258]	train-rmse:0.443068	test-rmse:0.444184
[1259]	train-rmse:0.443064	test-rmse:0.444182
[1260]	train-rmse:0.443062	test-rmse:0.44418
[1261]	train-rmse:0.443059	test-rmse:0.444178
[1262]	train-rmse:0.443055	test-rmse:0.444175
[1263]	train-rmse:0.443052	test-rmse:0.444173
[1264]	train-rmse:0.443049	test-rmse:0.444171
[1265]	train-rmse:0.443046	test-rmse:0.444168
[1266]	train-rmse:0.443044	test-rmse:0.444167
[1267]	train-rmse:0.443042	test-rmse:0.444166
[1268]	train-rmse:0.443039	test-rmse:0.444164
[1269]	train-rmse:0.443036	test-rmse:0.444162
[1270]	train-rmse:0.443034	test-rmse:0.44416
[1271]	train-rmse:0.44303	test-rmse:0.444157
[1272]	train-rmse:0.443027	test-rmse:0.444156
[1273]	train-rmse:0.443025	test-rmse:0.444154
[1274]	train-rmse:0.443022	test-rmse:0.444152
[1275]	train-rmse:0.443019	test-rmse:0.44415
[1276]	train-rmse:0.443016	test-rmse:0.444147
[1277]	train-rmse:0.443013	test-rmse:0.444145
[1278]	train-rmse:0.443006	test-rmse:0.444139
[1279]	train-rmse:0.443004	test-rmse:0.444138
[1280]	train-rmse:0.443002	test-rmse:0.444136
[1281]	train-rmse:0.443	test-rmse:0.444135
[1282]	train-rmse:0.442997	test-rmse:0.444133
[1283]	train-rmse:0.442994	test-rmse:0.44413
[1284]	train-rmse:0.442991	test-rmse:0.444128
[1285]	train-rmse:0.442988	test-rmse:0.444127
[1286]	train-rmse:0.442985	test-rmse:0.444124
[1287]	train-rmse:0.442981	test-rmse:0.444121
[1288]	train-rmse:0.442979	test-rmse:0.44412
[1289]	train-rmse:0.442976	test-rmse:0.444118
[1290]	train-rmse:0.442973	test-rmse:0.444115
[1291]	train-rmse:0.44297	test-rmse:0.444113
[1292]	train-rmse:0.442968	test-rmse:0.444112
[1293]	train-rmse:0.442965	test-rmse:0.44411
[1294]	train-rmse:0.442963	test-rmse:0.444109
[1295]	train-rmse:0.442961	test-rmse:0.444107
[1296]	train-rmse:0.442959	test-rmse:0.444106
[1297]	train-rmse:0.442953	test-rmse:0.444101
[1298]	train-rmse:0.442951	test-rmse:0.4441
[1299]	train-rmse:0.442949	test-rmse:0.444098
[1300]	train-rmse:0.442947	test-rmse:0.444097
[1301]	train-rmse:0.442945	test-rmse:0.444096
[1302]	train-rmse:0.442943	test-rmse:0.444095
[1303]	train-rmse:0.44294	test-rmse:0.444093
[1304]	train-rmse:0.442938	test-rmse:0.444092
[1305]	train-rmse:0.442934	test-rmse:0.444089
[1306]	train-rmse:0.442932	test-rmse:0.444087
[1307]	train-rmse:0.442928	test-rmse:0.444085
[1308]	train-rmse:0.442926	test-rmse:0.444083
[1309]	train-rmse:0.442923	test-rmse:0.444081
[1310]	train-rmse:0.44292	test-rmse:0.444079
[1311]	train-rmse:0.442917	test-rmse:0.444077
[1312]	train-rmse:0.442915	test-rmse:0.444076
[1313]	train-rmse:0.442912	test-rmse:0.444075
[1314]	train-rmse:0.442909	test-rmse:0.444072
[1315]	train-rmse:0.442906	test-rmse:0.444069
[1316]	train-rmse:0.442902	test-rmse:0.444067
[1317]	train-rmse:0.4429	test-rmse:0.444065
[1318]	train-rmse:0.442897	test-rmse:0.444063
[1319]	train-rmse:0.442894	test-rmse:0.444062
[1320]	train-rmse:0.442891	test-rmse:0.444059
[1321]	train-rmse:0.442889	test-rmse:0.444058
[1322]	train-rmse:0.442886	test-rmse:0.444055
[1323]	train-rmse:0.442884	test-rmse:0.444053
[1324]	train-rmse:0.442882	test-rmse:0.444052
[1325]	train-rmse:0.442879	test-rmse:0.444051
[1326]	train-rmse:0.442876	test-rmse:0.444049
[1327]	train-rmse:0.442875	test-rmse:0.444047
[1328]	train-rmse:0.442871	test-rmse:0.444045
[1329]	train-rmse:0.442866	test-rmse:0.444041
[1330]	train-rmse:0.442864	test-rmse:0.444039
[1331]	train-rmse:0.442862	test-rmse:0.444038
[1332]	train-rmse:0.44286	test-rmse:0.444037
[1333]	train-rmse:0.442857	test-rmse:0.444036
[1334]	train-rmse:0.442855	test-rmse:0.444035
[1335]	train-rmse:0.442853	test-rmse:0.444033
[1336]	train-rmse:0.44285	test-rmse:0.444031
[1337]	train-rmse:0.442845	test-rmse:0.444027
[1338]	train-rmse:0.442843	test-rmse:0.444026
[1339]	train-rmse:0.44284	test-rmse:0.444024
[1340]	train-rmse:0.442838	test-rmse:0.444023
[1341]	train-rmse:0.442836	test-rmse:0.444022
[1342]	train-rmse:0.442833	test-rmse:0.444019
[1343]	train-rmse:0.44283	test-rmse:0.444017
[1344]	train-rmse:0.442828	test-rmse:0.444016
[1345]	train-rmse:0.442826	test-rmse:0.444015
[1346]	train-rmse:0.442823	test-rmse:0.444012
[1347]	train-rmse:0.442821	test-rmse:0.44401
[1348]	train-rmse:0.442817	test-rmse:0.444008
[1349]	train-rmse:0.442815	test-rmse:0.444006
[1350]	train-rmse:0.442812	test-rmse:0.444005
[1351]	train-rmse:0.44281	test-rmse:0.444003
[1352]	train-rmse:0.442807	test-rmse:0.444002
[1353]	train-rmse:0.442803	test-rmse:0.443998
[1354]	train-rmse:0.442801	test-rmse:0.443997
[1355]	train-rmse:0.442799	test-rmse:0.443995
[1356]	train-rmse:0.442796	test-rmse:0.443993
[1357]	train-rmse:0.442793	test-rmse:0.443992
[1358]	train-rmse:0.442791	test-rmse:0.44399
[1359]	train-rmse:0.442789	test-rmse:0.443989
[1360]	train-rmse:0.442786	test-rmse:0.443987
[1361]	train-rmse:0.442783	test-rmse:0.443985
[1362]	train-rmse:0.442779	test-rmse:0.443982
[1363]	train-rmse:0.442777	test-rmse:0.44398
[1364]	train-rmse:0.442775	test-rmse:0.443979
[1365]	train-rmse:0.442773	test-rmse:0.443978
[1366]	train-rmse:0.44277	test-rmse:0.443977
[1367]	train-rmse:0.442764	test-rmse:0.443971
[1368]	train-rmse:0.442762	test-rmse:0.44397
[1369]	train-rmse:0.44276	test-rmse:0.443968
[1370]	train-rmse:0.442758	test-rmse:0.443967
[1371]	train-rmse:0.442755	test-rmse:0.443965
[1372]	train-rmse:0.442752	test-rmse:0.443963
[1373]	train-rmse:0.442748	test-rmse:0.44396
[1374]	train-rmse:0.442746	test-rmse:0.443959
[1375]	train-rmse:0.442743	test-rmse:0.443957
[1376]	train-rmse:0.442741	test-rmse:0.443956
[1377]	train-rmse:0.442739	test-rmse:0.443955
[1378]	train-rmse:0.442737	test-rmse:0.443953
[1379]	train-rmse:0.442735	test-rmse:0.443952
[1380]	train-rmse:0.442731	test-rmse:0.443949
[1381]	train-rmse:0.442728	test-rmse:0.443947
[1382]	train-rmse:0.442727	test-rmse:0.443946
[1383]	train-rmse:0.442724	test-rmse:0.443945
[1384]	train-rmse:0.44272	test-rmse:0.443941
[1385]	train-rmse:0.442717	test-rmse:0.443939
[1386]	train-rmse:0.442714	test-rmse:0.443938
[1387]	train-rmse:0.442712	test-rmse:0.443936
[1388]	train-rmse:0.442711	test-rmse:0.443936
[1389]	train-rmse:0.442707	test-rmse:0.443933
[1390]	train-rmse:0.442702	test-rmse:0.443928
[1391]	train-rmse:0.442699	test-rmse:0.443926
[1392]	train-rmse:0.442697	test-rmse:0.443925
[1393]	train-rmse:0.442695	test-rmse:0.443923
[1394]	train-rmse:0.442693	test-rmse:0.443923
[1395]	train-rmse:0.44269	test-rmse:0.443921
[1396]	train-rmse:0.442688	test-rmse:0.443919
[1397]	train-rmse:0.442686	test-rmse:0.443918
[1398]	train-rmse:0.442684	test-rmse:0.443917
[1399]	train-rmse:0.442681	test-rmse:0.443915
[1400]	train-rmse:0.442679	test-rmse:0.443914
[1401]	train-rmse:0.442677	test-rmse:0.443913
[1402]	train-rmse:0.442675	test-rmse:0.443911
[1403]	train-rmse:0.442672	test-rmse:0.44391
[1404]	train-rmse:0.44267	test-rmse:0.443908
[1405]	train-rmse:0.442668	test-rmse:0.443907
[1406]	train-rmse:0.442665	test-rmse:0.443905
[1407]	train-rmse:0.442663	test-rmse:0.443903
[1408]	train-rmse:0.44266	test-rmse:0.443902
[1409]	train-rmse:0.442657	test-rmse:0.443899
[1410]	train-rmse:0.442655	test-rmse:0.443898
[1411]	train-rmse:0.442651	test-rmse:0.443896
[1412]	train-rmse:0.44265	test-rmse:0.443895
[1413]	train-rmse:0.442648	test-rmse:0.443893
[1414]	train-rmse:0.442646	test-rmse:0.443892
[1415]	train-rmse:0.442644	test-rmse:0.443891
[1416]	train-rmse:0.442642	test-rmse:0.44389
[1417]	train-rmse:0.442639	test-rmse:0.443888
[1418]	train-rmse:0.442636	test-rmse:0.443886
[1419]	train-rmse:0.442634	test-rmse:0.443885
[1420]	train-rmse:0.442632	test-rmse:0.443884
[1421]	train-rmse:0.442629	test-rmse:0.443882
[1422]	train-rmse:0.442626	test-rmse:0.44388
[1423]	train-rmse:0.442623	test-rmse:0.443878
[1424]	train-rmse:0.442621	test-rmse:0.443876
[1425]	train-rmse:0.442618	test-rmse:0.443874
[1426]	train-rmse:0.442615	test-rmse:0.443872
[1427]	train-rmse:0.442613	test-rmse:0.443871
[1428]	train-rmse:0.44261	test-rmse:0.44387
[1429]	train-rmse:0.442608	test-rmse:0.443868
[1430]	train-rmse:0.442605	test-rmse:0.443866
[1431]	train-rmse:0.442602	test-rmse:0.443864
[1432]	train-rmse:0.4426	test-rmse:0.443863
[1433]	train-rmse:0.442598	test-rmse:0.443862
[1434]	train-rmse:0.442596	test-rmse:0.44386
[1435]	train-rmse:0.442593	test-rmse:0.443858
[1436]	train-rmse:0.442591	test-rmse:0.443857
[1437]	train-rmse:0.442589	test-rmse:0.443856
[1438]	train-rmse:0.442587	test-rmse:0.443855
[1439]	train-rmse:0.442585	test-rmse:0.443854
[1440]	train-rmse:0.442582	test-rmse:0.443852
[1441]	train-rmse:0.44258	test-rmse:0.443851
[1442]	train-rmse:0.442577	test-rmse:0.443849
[1443]	train-rmse:0.442575	test-rmse:0.443848
[1444]	train-rmse:0.442573	test-rmse:0.443846
[1445]	train-rmse:0.442571	test-rmse:0.443845
[1446]	train-rmse:0.442569	test-rmse:0.443844
[1447]	train-rmse:0.442567	test-rmse:0.443842
[1448]	train-rmse:0.442564	test-rmse:0.44384
[1449]	train-rmse:0.442561	test-rmse:0.443838
[1450]	train-rmse:0.442558	test-rmse:0.443836
[1451]	train-rmse:0.442556	test-rmse:0.443835
[1452]	train-rmse:0.442554	test-rmse:0.443834
[1453]	train-rmse:0.442552	test-rmse:0.443832
[1454]	train-rmse:0.442549	test-rmse:0.44383
[1455]	train-rmse:0.442545	test-rmse:0.443828
[1456]	train-rmse:0.442544	test-rmse:0.443827
[1457]	train-rmse:0.442541	test-rmse:0.443825
[1458]	train-rmse:0.442538	test-rmse:0.443823
[1459]	train-rmse:0.442536	test-rmse:0.443821
[1460]	train-rmse:0.442534	test-rmse:0.443821
[1461]	train-rmse:0.442529	test-rmse:0.443816
[1462]	train-rmse:0.442527	test-rmse:0.443815
[1463]	train-rmse:0.442524	test-rmse:0.443813
[1464]	train-rmse:0.442522	test-rmse:0.443811
[1465]	train-rmse:0.442519	test-rmse:0.44381
[1466]	train-rmse:0.442517	test-rmse:0.443809
[1467]	train-rmse:0.442515	test-rmse:0.443808
[1468]	train-rmse:0.442512	test-rmse:0.443806
[1469]	train-rmse:0.44251	test-rmse:0.443804
[1470]	train-rmse:0.442507	test-rmse:0.443802
[1471]	train-rmse:0.442503	test-rmse:0.4438
[1472]	train-rmse:0.442501	test-rmse:0.443798
[1473]	train-rmse:0.442499	test-rmse:0.443797
[1474]	train-rmse:0.442497	test-rmse:0.443796
[1475]	train-rmse:0.442494	test-rmse:0.443794
[1476]	train-rmse:0.442493	test-rmse:0.443793
[1477]	train-rmse:0.44249	test-rmse:0.443791
[1478]	train-rmse:0.442488	test-rmse:0.443789
[1479]	train-rmse:0.442485	test-rmse:0.443788
[1480]	train-rmse:0.442482	test-rmse:0.443785
[1481]	train-rmse:0.442479	test-rmse:0.443783
[1482]	train-rmse:0.442477	test-rmse:0.443782
[1483]	train-rmse:0.442475	test-rmse:0.443781
[1484]	train-rmse:0.442473	test-rmse:0.44378
[1485]	train-rmse:0.442468	test-rmse:0.443776
[1486]	train-rmse:0.442466	test-rmse:0.443774
[1487]	train-rmse:0.442464	test-rmse:0.443772
[1488]	train-rmse:0.442461	test-rmse:0.44377
[1489]	train-rmse:0.442459	test-rmse:0.44377
[1490]	train-rmse:0.442457	test-rmse:0.443769
[1491]	train-rmse:0.442453	test-rmse:0.443766
[1492]	train-rmse:0.442451	test-rmse:0.443764
[1493]	train-rmse:0.442449	test-rmse:0.443763
[1494]	train-rmse:0.442446	test-rmse:0.443761
[1495]	train-rmse:0.442444	test-rmse:0.443759
[1496]	train-rmse:0.442441	test-rmse:0.443758
[1497]	train-rmse:0.442439	test-rmse:0.443757
[1498]	train-rmse:0.442437	test-rmse:0.443755
[1499]	train-rmse:0.442434	test-rmse:0.443753
[1500]	train-rmse:0.442432	test-rmse:0.443751
[1501]	train-rmse:0.442429	test-rmse:0.44375
[1502]	train-rmse:0.442427	test-rmse:0.443748
[1503]	train-rmse:0.442425	test-rmse:0.443746
[1504]	train-rmse:0.442422	test-rmse:0.443745
[1505]	train-rmse:0.442421	test-rmse:0.443744
[1506]	train-rmse:0.442419	test-rmse:0.443743
[1507]	train-rmse:0.442415	test-rmse:0.44374
[1508]	train-rmse:0.442412	test-rmse:0.443738
[1509]	train-rmse:0.442409	test-rmse:0.443736
[1510]	train-rmse:0.442407	test-rmse:0.443734
[1511]	train-rmse:0.442403	test-rmse:0.443731
[1512]	train-rmse:0.442403	test-rmse:0.443732
[1513]	train-rmse:0.442398	test-rmse:0.443727
[1514]	train-rmse:0.442396	test-rmse:0.443727
[1515]	train-rmse:0.442393	test-rmse:0.443724
[1516]	train-rmse:0.442391	test-rmse:0.443723
[1517]	train-rmse:0.442389	test-rmse:0.443721
[1518]	train-rmse:0.442386	test-rmse:0.443719
[1519]	train-rmse:0.442383	test-rmse:0.443717
[1520]	train-rmse:0.442381	test-rmse:0.443716
[1521]	train-rmse:0.442378	test-rmse:0.443713
[1522]	train-rmse:0.442374	test-rmse:0.44371
[1523]	train-rmse:0.442372	test-rmse:0.443709
[1524]	train-rmse:0.442369	test-rmse:0.443707
[1525]	train-rmse:0.442367	test-rmse:0.443706
[1526]	train-rmse:0.442365	test-rmse:0.443705
[1527]	train-rmse:0.442363	test-rmse:0.443704
[1528]	train-rmse:0.442361	test-rmse:0.443702
[1529]	train-rmse:0.442359	test-rmse:0.443701
[1530]	train-rmse:0.442355	test-rmse:0.443698
[1531]	train-rmse:0.442353	test-rmse:0.443697
[1532]	train-rmse:0.442351	test-rmse:0.443696
[1533]	train-rmse:0.44235	test-rmse:0.443694
[1534]	train-rmse:0.442347	test-rmse:0.443693
[1535]	train-rmse:0.442345	test-rmse:0.443692
[1536]	train-rmse:0.442342	test-rmse:0.44369
[1537]	train-rmse:0.44234	test-rmse:0.443689
[1538]	train-rmse:0.442339	test-rmse:0.443688
[1539]	train-rmse:0.442336	test-rmse:0.443687
[1540]	train-rmse:0.442333	test-rmse:0.443685
[1541]	train-rmse:0.442331	test-rmse:0.443684
[1542]	train-rmse:0.442328	test-rmse:0.443681
[1543]	train-rmse:0.442325	test-rmse:0.443678
[1544]	train-rmse:0.442323	test-rmse:0.443677
[1545]	train-rmse:0.442318	test-rmse:0.443673
[1546]	train-rmse:0.442316	test-rmse:0.443671
[1547]	train-rmse:0.442314	test-rmse:0.443671
[1548]	train-rmse:0.442311	test-rmse:0.443669
[1549]	train-rmse:0.442309	test-rmse:0.443668
[1550]	train-rmse:0.442307	test-rmse:0.443666
[1551]	train-rmse:0.442303	test-rmse:0.443663
[1552]	train-rmse:0.442301	test-rmse:0.443661
[1553]	train-rmse:0.442299	test-rmse:0.44366
[1554]	train-rmse:0.442295	test-rmse:0.443658
[1555]	train-rmse:0.442293	test-rmse:0.443656
[1556]	train-rmse:0.44229	test-rmse:0.443655
[1557]	train-rmse:0.442288	test-rmse:0.443653
[1558]	train-rmse:0.442286	test-rmse:0.443652
[1559]	train-rmse:0.442284	test-rmse:0.443651
[1560]	train-rmse:0.442282	test-rmse:0.44365
[1561]	train-rmse:0.44228	test-rmse:0.443649
[1562]	train-rmse:0.442277	test-rmse:0.443648
[1563]	train-rmse:0.442276	test-rmse:0.443647
[1564]	train-rmse:0.442273	test-rmse:0.443646
[1565]	train-rmse:0.442271	test-rmse:0.443644
[1566]	train-rmse:0.442268	test-rmse:0.443643
[1567]	train-rmse:0.442267	test-rmse:0.443642
[1568]	train-rmse:0.442264	test-rmse:0.44364
[1569]	train-rmse:0.442261	test-rmse:0.443638
[1570]	train-rmse:0.442259	test-rmse:0.443637
[1571]	train-rmse:0.442257	test-rmse:0.443636
[1572]	train-rmse:0.442255	test-rmse:0.443634
[1573]	train-rmse:0.442253	test-rmse:0.443634
[1574]	train-rmse:0.442251	test-rmse:0.443632
[1575]	train-rmse:0.442249	test-rmse:0.443631
[1576]	train-rmse:0.442246	test-rmse:0.443629
[1577]	train-rmse:0.442245	test-rmse:0.443628
[1578]	train-rmse:0.442242	test-rmse:0.443626
[1579]	train-rmse:0.44224	test-rmse:0.443626
[1580]	train-rmse:0.442239	test-rmse:0.443625
[1581]	train-rmse:0.442236	test-rmse:0.443623
[1582]	train-rmse:0.442234	test-rmse:0.443622
[1583]	train-rmse:0.442232	test-rmse:0.44362
[1584]	train-rmse:0.442231	test-rmse:0.443619
[1585]	train-rmse:0.442228	test-rmse:0.443617
[1586]	train-rmse:0.442225	test-rmse:0.443616
[1587]	train-rmse:0.442224	test-rmse:0.443614
[1588]	train-rmse:0.442221	test-rmse:0.443613
[1589]	train-rmse:0.442218	test-rmse:0.44361
[1590]	train-rmse:0.442215	test-rmse:0.443608
[1591]	train-rmse:0.442213	test-rmse:0.443607
[1592]	train-rmse:0.442211	test-rmse:0.443605
[1593]	train-rmse:0.442208	test-rmse:0.443604
[1594]	train-rmse:0.442206	test-rmse:0.443602
[1595]	train-rmse:0.442204	test-rmse:0.443601
[1596]	train-rmse:0.442202	test-rmse:0.4436
[1597]	train-rmse:0.4422	test-rmse:0.443598
[1598]	train-rmse:0.442197	test-rmse:0.443596
[1599]	train-rmse:0.442195	test-rmse:0.443595
[1600]	train-rmse:0.442193	test-rmse:0.443594
[1601]	train-rmse:0.44219	test-rmse:0.443592
[1602]	train-rmse:0.442188	test-rmse:0.443591
[1603]	train-rmse:0.442186	test-rmse:0.44359
[1604]	train-rmse:0.442184	test-rmse:0.443588
[1605]	train-rmse:0.442181	test-rmse:0.443587
[1606]	train-rmse:0.442179	test-rmse:0.443585
[1607]	train-rmse:0.442175	test-rmse:0.443582
[1608]	train-rmse:0.442173	test-rmse:0.443581
[1609]	train-rmse:0.442171	test-rmse:0.443579
[1610]	train-rmse:0.442169	test-rmse:0.443579
[1611]	train-rmse:0.442166	test-rmse:0.443576
[1612]	train-rmse:0.442164	test-rmse:0.443575
[1613]	train-rmse:0.442162	test-rmse:0.443574
[1614]	train-rmse:0.442159	test-rmse:0.443572
[1615]	train-rmse:0.442157	test-rmse:0.44357
[1616]	train-rmse:0.442155	test-rmse:0.443569
[1617]	train-rmse:0.442153	test-rmse:0.443569
[1618]	train-rmse:0.44215	test-rmse:0.443567
[1619]	train-rmse:0.442149	test-rmse:0.443566
[1620]	train-rmse:0.442146	test-rmse:0.443564
[1621]	train-rmse:0.442144	test-rmse:0.443563
[1622]	train-rmse:0.442142	test-rmse:0.443561
[1623]	train-rmse:0.44214	test-rmse:0.44356
[1624]	train-rmse:0.442138	test-rmse:0.443559
[1625]	train-rmse:0.442136	test-rmse:0.443559
[1626]	train-rmse:0.442135	test-rmse:0.443558
[1627]	train-rmse:0.442132	test-rmse:0.443556
[1628]	train-rmse:0.44213	test-rmse:0.443555
[1629]	train-rmse:0.442128	test-rmse:0.443554
[1630]	train-rmse:0.442126	test-rmse:0.443553
[1631]	train-rmse:0.442124	test-rmse:0.443551
[1632]	train-rmse:0.442121	test-rmse:0.443549
[1633]	train-rmse:0.44212	test-rmse:0.443549
[1634]	train-rmse:0.442118	test-rmse:0.443548
[1635]	train-rmse:0.442116	test-rmse:0.443547
[1636]	train-rmse:0.442113	test-rmse:0.443545
[1637]	train-rmse:0.442112	test-rmse:0.443545
[1638]	train-rmse:0.442109	test-rmse:0.443544
[1639]	train-rmse:0.442108	test-rmse:0.443543
[1640]	train-rmse:0.442106	test-rmse:0.443542
[1641]	train-rmse:0.442104	test-rmse:0.44354
[1642]	train-rmse:0.442102	test-rmse:0.443539
[1643]	train-rmse:0.4421	test-rmse:0.443539
[1644]	train-rmse:0.442098	test-rmse:0.443538
[1645]	train-rmse:0.442096	test-rmse:0.443537
[1646]	train-rmse:0.442094	test-rmse:0.443536
[1647]	train-rmse:0.442092	test-rmse:0.443535
[1648]	train-rmse:0.442089	test-rmse:0.443533
[1649]	train-rmse:0.442087	test-rmse:0.443532
[1650]	train-rmse:0.442085	test-rmse:0.44353
[1651]	train-rmse:0.442083	test-rmse:0.44353
[1652]	train-rmse:0.442081	test-rmse:0.443528
[1653]	train-rmse:0.442079	test-rmse:0.443527
[1654]	train-rmse:0.442076	test-rmse:0.443525
[1655]	train-rmse:0.442074	test-rmse:0.443523
[1656]	train-rmse:0.442072	test-rmse:0.443522
[1657]	train-rmse:0.44207	test-rmse:0.443521
[1658]	train-rmse:0.442068	test-rmse:0.44352
[1659]	train-rmse:0.442066	test-rmse:0.44352
[1660]	train-rmse:0.442063	test-rmse:0.443516
[1661]	train-rmse:0.44206	test-rmse:0.443515
[1662]	train-rmse:0.442058	test-rmse:0.443514
[1663]	train-rmse:0.442056	test-rmse:0.443513
[1664]	train-rmse:0.442053	test-rmse:0.443511
[1665]	train-rmse:0.442051	test-rmse:0.443509
[1666]	train-rmse:0.442049	test-rmse:0.443508
[1667]	train-rmse:0.442046	test-rmse:0.443506
[1668]	train-rmse:0.442043	test-rmse:0.443503
[1669]	train-rmse:0.442041	test-rmse:0.443502
[1670]	train-rmse:0.442038	test-rmse:0.4435
[1671]	train-rmse:0.442036	test-rmse:0.443499
[1672]	train-rmse:0.442034	test-rmse:0.443498
[1673]	train-rmse:0.442032	test-rmse:0.443497
[1674]	train-rmse:0.44203	test-rmse:0.443496
[1675]	train-rmse:0.442029	test-rmse:0.443495
[1676]	train-rmse:0.442027	test-rmse:0.443493
[1677]	train-rmse:0.442024	test-rmse:0.443492
[1678]	train-rmse:0.442023	test-rmse:0.443491
[1679]	train-rmse:0.44202	test-rmse:0.44349
[1680]	train-rmse:0.442018	test-rmse:0.443489
[1681]	train-rmse:0.442015	test-rmse:0.443487
[1682]	train-rmse:0.442012	test-rmse:0.443485
[1683]	train-rmse:0.44201	test-rmse:0.443483
[1684]	train-rmse:0.442008	test-rmse:0.443482
[1685]	train-rmse:0.442006	test-rmse:0.443481
[1686]	train-rmse:0.442003	test-rmse:0.443479
[1687]	train-rmse:0.442002	test-rmse:0.443479
[1688]	train-rmse:0.441999	test-rmse:0.443477
[1689]	train-rmse:0.441996	test-rmse:0.443475
[1690]	train-rmse:0.441994	test-rmse:0.443473
[1691]	train-rmse:0.441991	test-rmse:0.443471
[1692]	train-rmse:0.441988	test-rmse:0.443469
[1693]	train-rmse:0.441985	test-rmse:0.443467
[1694]	train-rmse:0.441982	test-rmse:0.443466
[1695]	train-rmse:0.44198	test-rmse:0.443464
[1696]	train-rmse:0.441978	test-rmse:0.443462
[1697]	train-rmse:0.441976	test-rmse:0.443461
[1698]	train-rmse:0.441974	test-rmse:0.44346
[1699]	train-rmse:0.441971	test-rmse:0.443458
[1700]	train-rmse:0.441968	test-rmse:0.443456
[1701]	train-rmse:0.441966	test-rmse:0.443454
[1702]	train-rmse:0.441964	test-rmse:0.443454
[1703]	train-rmse:0.441962	test-rmse:0.443453
[1704]	train-rmse:0.44196	test-rmse:0.443451
[1705]	train-rmse:0.441958	test-rmse:0.443451
[1706]	train-rmse:0.441956	test-rmse:0.443449
[1707]	train-rmse:0.441955	test-rmse:0.443449
[1708]	train-rmse:0.441953	test-rmse:0.443448
[1709]	train-rmse:0.441951	test-rmse:0.443446
[1710]	train-rmse:0.441948	test-rmse:0.443445
[1711]	train-rmse:0.441946	test-rmse:0.443444
[1712]	train-rmse:0.441944	test-rmse:0.443442
[1713]	train-rmse:0.441943	test-rmse:0.443442
[1714]	train-rmse:0.441941	test-rmse:0.443441
[1715]	train-rmse:0.441939	test-rmse:0.44344
[1716]	train-rmse:0.441937	test-rmse:0.443439
[1717]	train-rmse:0.441935	test-rmse:0.443437
[1718]	train-rmse:0.441933	test-rmse:0.443436
[1719]	train-rmse:0.441931	test-rmse:0.443435
[1720]	train-rmse:0.441928	test-rmse:0.443433
[1721]	train-rmse:0.441926	test-rmse:0.443431
[1722]	train-rmse:0.441924	test-rmse:0.443431
[1723]	train-rmse:0.441923	test-rmse:0.44343
[1724]	train-rmse:0.441921	test-rmse:0.443429
[1725]	train-rmse:0.441918	test-rmse:0.443428
[1726]	train-rmse:0.441917	test-rmse:0.443427
[1727]	train-rmse:0.441915	test-rmse:0.443427
[1728]	train-rmse:0.441913	test-rmse:0.443426
[1729]	train-rmse:0.441912	test-rmse:0.443426
[1730]	train-rmse:0.441909	test-rmse:0.443423
[1731]	train-rmse:0.441907	test-rmse:0.443422
[1732]	train-rmse:0.441904	test-rmse:0.44342
[1733]	train-rmse:0.441902	test-rmse:0.443419
[1734]	train-rmse:0.4419	test-rmse:0.443417
[1735]	train-rmse:0.441898	test-rmse:0.443416
[1736]	train-rmse:0.441896	test-rmse:0.443416
[1737]	train-rmse:0.441894	test-rmse:0.443415
[1738]	train-rmse:0.441892	test-rmse:0.443413
[1739]	train-rmse:0.441889	test-rmse:0.443411
[1740]	train-rmse:0.441887	test-rmse:0.44341
[1741]	train-rmse:0.441885	test-rmse:0.443409
[1742]	train-rmse:0.441883	test-rmse:0.443407
[1743]	train-rmse:0.44188	test-rmse:0.443405
[1744]	train-rmse:0.441877	test-rmse:0.443403
[1745]	train-rmse:0.441875	test-rmse:0.443402
[1746]	train-rmse:0.441873	test-rmse:0.443401
[1747]	train-rmse:0.441872	test-rmse:0.4434
[1748]	train-rmse:0.441869	test-rmse:0.443399
[1749]	train-rmse:0.441867	test-rmse:0.443397
[1750]	train-rmse:0.441864	test-rmse:0.443395
[1751]	train-rmse:0.441863	test-rmse:0.443394
[1752]	train-rmse:0.441861	test-rmse:0.443393
[1753]	train-rmse:0.441859	test-rmse:0.443392
[1754]	train-rmse:0.441857	test-rmse:0.443391
[1755]	train-rmse:0.441856	test-rmse:0.44339
[1756]	train-rmse:0.441853	test-rmse:0.443388
[1757]	train-rmse:0.441852	test-rmse:0.443388
[1758]	train-rmse:0.441849	test-rmse:0.443386
[1759]	train-rmse:0.441847	test-rmse:0.443386
[1760]	train-rmse:0.441846	test-rmse:0.443385
[1761]	train-rmse:0.441844	test-rmse:0.443384
[1762]	train-rmse:0.441842	test-rmse:0.443383
[1763]	train-rmse:0.44184	test-rmse:0.443382
[1764]	train-rmse:0.441839	test-rmse:0.443382
[1765]	train-rmse:0.441837	test-rmse:0.443381
[1766]	train-rmse:0.441834	test-rmse:0.443379
[1767]	train-rmse:0.441832	test-rmse:0.443378
[1768]	train-rmse:0.44183	test-rmse:0.443377
[1769]	train-rmse:0.441828	test-rmse:0.443375
[1770]	train-rmse:0.441825	test-rmse:0.443373
[1771]	train-rmse:0.441824	test-rmse:0.443372
[1772]	train-rmse:0.441822	test-rmse:0.443371
[1773]	train-rmse:0.441819	test-rmse:0.443369
[1774]	train-rmse:0.441818	test-rmse:0.443368
[1775]	train-rmse:0.441814	test-rmse:0.443366
[1776]	train-rmse:0.441812	test-rmse:0.443365
[1777]	train-rmse:0.44181	test-rmse:0.443364
[1778]	train-rmse:0.441808	test-rmse:0.443362
[1779]	train-rmse:0.441805	test-rmse:0.443361
[1780]	train-rmse:0.441803	test-rmse:0.44336
[1781]	train-rmse:0.441801	test-rmse:0.443358
[1782]	train-rmse:0.441799	test-rmse:0.443357
[1783]	train-rmse:0.441797	test-rmse:0.443356
[1784]	train-rmse:0.441796	test-rmse:0.443356
[1785]	train-rmse:0.441793	test-rmse:0.443354
[1786]	train-rmse:0.441792	test-rmse:0.443354
[1787]	train-rmse:0.44179	test-rmse:0.443352
[1788]	train-rmse:0.441788	test-rmse:0.443351
[1789]	train-rmse:0.441786	test-rmse:0.443349
[1790]	train-rmse:0.441782	test-rmse:0.443347
[1791]	train-rmse:0.44178	test-rmse:0.443344
[1792]	train-rmse:0.441778	test-rmse:0.443344
[1793]	train-rmse:0.441776	test-rmse:0.443343
[1794]	train-rmse:0.441773	test-rmse:0.44334
[1795]	train-rmse:0.441771	test-rmse:0.44334
[1796]	train-rmse:0.441769	test-rmse:0.443338
[1797]	train-rmse:0.441767	test-rmse:0.443337
[1798]	train-rmse:0.441765	test-rmse:0.443336
[1799]	train-rmse:0.441763	test-rmse:0.443335
[1800]	train-rmse:0.44176	test-rmse:0.443333
[1801]	train-rmse:0.441758	test-rmse:0.443332
[1802]	train-rmse:0.441756	test-rmse:0.44333
[1803]	train-rmse:0.441753	test-rmse:0.443328
[1804]	train-rmse:0.441752	test-rmse:0.443327
[1805]	train-rmse:0.441748	test-rmse:0.443325
[1806]	train-rmse:0.441746	test-rmse:0.443324
[1807]	train-rmse:0.441743	test-rmse:0.443322
[1808]	train-rmse:0.441742	test-rmse:0.443321
[1809]	train-rmse:0.441739	test-rmse:0.443319
[1810]	train-rmse:0.441737	test-rmse:0.443318
[1811]	train-rmse:0.441735	test-rmse:0.443317
[1812]	train-rmse:0.441733	test-rmse:0.443316
[1813]	train-rmse:0.441731	test-rmse:0.443315
[1814]	train-rmse:0.441729	test-rmse:0.443313
[1815]	train-rmse:0.441726	test-rmse:0.443312
[1816]	train-rmse:0.441724	test-rmse:0.44331
[1817]	train-rmse:0.441722	test-rmse:0.443309
[1818]	train-rmse:0.441721	test-rmse:0.443308
[1819]	train-rmse:0.441718	test-rmse:0.443307
[1820]	train-rmse:0.441716	test-rmse:0.443305
[1821]	train-rmse:0.441714	test-rmse:0.443305
[1822]	train-rmse:0.441713	test-rmse:0.443303
[1823]	train-rmse:0.441711	test-rmse:0.443303
[1824]	train-rmse:0.441708	test-rmse:0.443301
[1825]	train-rmse:0.441707	test-rmse:0.4433
[1826]	train-rmse:0.441705	test-rmse:0.443299
[1827]	train-rmse:0.441702	test-rmse:0.443297
[1828]	train-rmse:0.4417	test-rmse:0.443296
[1829]	train-rmse:0.441698	test-rmse:0.443294
[1830]	train-rmse:0.441697	test-rmse:0.443293
[1831]	train-rmse:0.441695	test-rmse:0.443292
[1832]	train-rmse:0.441692	test-rmse:0.44329
[1833]	train-rmse:0.44169	test-rmse:0.443289
[1834]	train-rmse:0.441687	test-rmse:0.443287
[1835]	train-rmse:0.441685	test-rmse:0.443286
[1836]	train-rmse:0.441683	test-rmse:0.443285
[1837]	train-rmse:0.441681	test-rmse:0.443284
[1838]	train-rmse:0.44168	test-rmse:0.443284
[1839]	train-rmse:0.441678	test-rmse:0.443283
[1840]	train-rmse:0.441675	test-rmse:0.44328
[1841]	train-rmse:0.441673	test-rmse:0.443278
[1842]	train-rmse:0.44167	test-rmse:0.443277
[1843]	train-rmse:0.441668	test-rmse:0.443276
[1844]	train-rmse:0.441667	test-rmse:0.443275
[1845]	train-rmse:0.441664	test-rmse:0.443274
[1846]	train-rmse:0.441663	test-rmse:0.443272
[1847]	train-rmse:0.44166	test-rmse:0.443271
[1848]	train-rmse:0.441658	test-rmse:0.44327
[1849]	train-rmse:0.441656	test-rmse:0.443269
[1850]	train-rmse:0.441654	test-rmse:0.443268
[1851]	train-rmse:0.441652	test-rmse:0.443266
[1852]	train-rmse:0.44165	test-rmse:0.443265
[1853]	train-rmse:0.441648	test-rmse:0.443263
[1854]	train-rmse:0.441645	test-rmse:0.443261
[1855]	train-rmse:0.441643	test-rmse:0.44326
[1856]	train-rmse:0.441642	test-rmse:0.44326
[1857]	train-rmse:0.441639	test-rmse:0.443259
[1858]	train-rmse:0.441638	test-rmse:0.443258
[1859]	train-rmse:0.441635	test-rmse:0.443256
[1860]	train-rmse:0.441633	test-rmse:0.443255
[1861]	train-rmse:0.441631	test-rmse:0.443254
[1862]	train-rmse:0.441629	test-rmse:0.443252
[1863]	train-rmse:0.441627	test-rmse:0.443251
[1864]	train-rmse:0.441624	test-rmse:0.443249
[1865]	train-rmse:0.441622	test-rmse:0.443247
[1866]	train-rmse:0.44162	test-rmse:0.443246
[1867]	train-rmse:0.441618	test-rmse:0.443246
[1868]	train-rmse:0.441615	test-rmse:0.443243
[1869]	train-rmse:0.441613	test-rmse:0.443242
[1870]	train-rmse:0.441611	test-rmse:0.44324
[1871]	train-rmse:0.441609	test-rmse:0.443239
[1872]	train-rmse:0.441607	test-rmse:0.443238
[1873]	train-rmse:0.441605	test-rmse:0.443237
[1874]	train-rmse:0.441602	test-rmse:0.443235
[1875]	train-rmse:0.4416	test-rmse:0.443233
[1876]	train-rmse:0.441598	test-rmse:0.443232
[1877]	train-rmse:0.441596	test-rmse:0.443231
[1878]	train-rmse:0.441595	test-rmse:0.44323
[1879]	train-rmse:0.441593	test-rmse:0.443228
[1880]	train-rmse:0.44159	test-rmse:0.443227
[1881]	train-rmse:0.441589	test-rmse:0.443226
[1882]	train-rmse:0.441587	test-rmse:0.443226
[1883]	train-rmse:0.441585	test-rmse:0.443224
[1884]	train-rmse:0.441582	test-rmse:0.443222
[1885]	train-rmse:0.44158	test-rmse:0.443221
[1886]	train-rmse:0.441578	test-rmse:0.443219
[1887]	train-rmse:0.441576	test-rmse:0.443218
[1888]	train-rmse:0.441575	test-rmse:0.443218
[1889]	train-rmse:0.441572	test-rmse:0.443216
[1890]	train-rmse:0.441569	test-rmse:0.443213
[1891]	train-rmse:0.441567	test-rmse:0.443212
[1892]	train-rmse:0.441564	test-rmse:0.443211
[1893]	train-rmse:0.441563	test-rmse:0.44321
[1894]	train-rmse:0.441561	test-rmse:0.44321
[1895]	train-rmse:0.441559	test-rmse:0.443209
[1896]	train-rmse:0.441558	test-rmse:0.443208
[1897]	train-rmse:0.441556	test-rmse:0.443207
[1898]	train-rmse:0.441554	test-rmse:0.443207
[1899]	train-rmse:0.441552	test-rmse:0.443205
[1900]	train-rmse:0.441551	test-rmse:0.443205
[1901]	train-rmse:0.441549	test-rmse:0.443204
[1902]	train-rmse:0.441547	test-rmse:0.443203
[1903]	train-rmse:0.441545	test-rmse:0.443201
[1904]	train-rmse:0.441543	test-rmse:0.443201
[1905]	train-rmse:0.441541	test-rmse:0.443199
[1906]	train-rmse:0.441539	test-rmse:0.443198
[1907]	train-rmse:0.441537	test-rmse:0.443196
[1908]	train-rmse:0.441534	test-rmse:0.443195
[1909]	train-rmse:0.441533	test-rmse:0.443194
[1910]	train-rmse:0.44153	test-rmse:0.443192
[1911]	train-rmse:0.441528	test-rmse:0.443192
[1912]	train-rmse:0.441526	test-rmse:0.44319
[1913]	train-rmse:0.441524	test-rmse:0.44319
[1914]	train-rmse:0.441522	test-rmse:0.443189
[1915]	train-rmse:0.441521	test-rmse:0.443188
[1916]	train-rmse:0.441519	test-rmse:0.443186
[1917]	train-rmse:0.441517	test-rmse:0.443186
[1918]	train-rmse:0.441515	test-rmse:0.443185
[1919]	train-rmse:0.441512	test-rmse:0.443183
[1920]	train-rmse:0.441511	test-rmse:0.443182
[1921]	train-rmse:0.441509	test-rmse:0.443181
[1922]	train-rmse:0.441507	test-rmse:0.44318
[1923]	train-rmse:0.441505	test-rmse:0.443179
[1924]	train-rmse:0.441503	test-rmse:0.443178
[1925]	train-rmse:0.441501	test-rmse:0.443177
[1926]	train-rmse:0.441498	test-rmse:0.443175
[1927]	train-rmse:0.441496	test-rmse:0.443174
[1928]	train-rmse:0.441494	test-rmse:0.443172
[1929]	train-rmse:0.441492	test-rmse:0.443171
[1930]	train-rmse:0.441489	test-rmse:0.44317
[1931]	train-rmse:0.441487	test-rmse:0.443169
[1932]	train-rmse:0.441486	test-rmse:0.443168
[1933]	train-rmse:0.441484	test-rmse:0.443167
[1934]	train-rmse:0.441482	test-rmse:0.443166
[1935]	train-rmse:0.44148	test-rmse:0.443165
[1936]	train-rmse:0.441477	test-rmse:0.443163
[1937]	train-rmse:0.441475	test-rmse:0.443162
[1938]	train-rmse:0.441473	test-rmse:0.44316
[1939]	train-rmse:0.441471	test-rmse:0.443159
[1940]	train-rmse:0.441469	test-rmse:0.443157
[1941]	train-rmse:0.441467	test-rmse:0.443156
[1942]	train-rmse:0.441465	test-rmse:0.443155
[1943]	train-rmse:0.441463	test-rmse:0.443154
[1944]	train-rmse:0.441461	test-rmse:0.443153
[1945]	train-rmse:0.44146	test-rmse:0.443152
[1946]	train-rmse:0.441458	test-rmse:0.443151
[1947]	train-rmse:0.441456	test-rmse:0.44315
[1948]	train-rmse:0.441453	test-rmse:0.443149
[1949]	train-rmse:0.441452	test-rmse:0.443148
[1950]	train-rmse:0.44145	test-rmse:0.443147
[1951]	train-rmse:0.441448	test-rmse:0.443146
[1952]	train-rmse:0.441447	test-rmse:0.443145
[1953]	train-rmse:0.441445	test-rmse:0.443144
[1954]	train-rmse:0.441443	test-rmse:0.443143
[1955]	train-rmse:0.441441	test-rmse:0.443142
[1956]	train-rmse:0.44144	test-rmse:0.443141
[1957]	train-rmse:0.441437	test-rmse:0.44314
[1958]	train-rmse:0.441436	test-rmse:0.443139
[1959]	train-rmse:0.441434	test-rmse:0.443139
[1960]	train-rmse:0.441432	test-rmse:0.443138
[1961]	train-rmse:0.44143	test-rmse:0.443137
[1962]	train-rmse:0.441427	test-rmse:0.443135
[1963]	train-rmse:0.441425	test-rmse:0.443133
[1964]	train-rmse:0.441423	test-rmse:0.443132
[1965]	train-rmse:0.441421	test-rmse:0.443131
[1966]	train-rmse:0.441419	test-rmse:0.443129
[1967]	train-rmse:0.441417	test-rmse:0.443128
[1968]	train-rmse:0.441415	test-rmse:0.443127
[1969]	train-rmse:0.441414	test-rmse:0.443126
[1970]	train-rmse:0.441412	test-rmse:0.443126
[1971]	train-rmse:0.44141	test-rmse:0.443125
[1972]	train-rmse:0.441408	test-rmse:0.443124
[1973]	train-rmse:0.441406	test-rmse:0.443122
[1974]	train-rmse:0.441405	test-rmse:0.443121
[1975]	train-rmse:0.441402	test-rmse:0.44312
[1976]	train-rmse:0.441401	test-rmse:0.443119
[1977]	train-rmse:0.441399	test-rmse:0.443118
[1978]	train-rmse:0.441397	test-rmse:0.443117
[1979]	train-rmse:0.441395	test-rmse:0.443115
[1980]	train-rmse:0.441392	test-rmse:0.443113
[1981]	train-rmse:0.44139	test-rmse:0.443112
[1982]	train-rmse:0.441389	test-rmse:0.443111
[1983]	train-rmse:0.441387	test-rmse:0.44311
[1984]	train-rmse:0.441385	test-rmse:0.443109
[1985]	train-rmse:0.441384	test-rmse:0.443108
[1986]	train-rmse:0.441382	test-rmse:0.443108
[1987]	train-rmse:0.44138	test-rmse:0.443107
[1988]	train-rmse:0.441378	test-rmse:0.443105
[1989]	train-rmse:0.441376	test-rmse:0.443104
[1990]	train-rmse:0.441375	test-rmse:0.443104
[1991]	train-rmse:0.441372	test-rmse:0.443102
[1992]	train-rmse:0.44137	test-rmse:0.443101
[1993]	train-rmse:0.441369	test-rmse:0.4431
[1994]	train-rmse:0.441366	test-rmse:0.443099
[1995]	train-rmse:0.441364	test-rmse:0.443097
[1996]	train-rmse:0.441362	test-rmse:0.443095
[1997]	train-rmse:0.44136	test-rmse:0.443094
[1998]	train-rmse:0.441357	test-rmse:0.443092
[1999]	train-rmse:0.441356	test-rmse:0.443091
      test-rmse-mean  test-rmse-std  train-rmse-mean  train-rmse-std
1995        0.443097       0.000280         0.441364        0.000077
1996        0.443095       0.000280         0.441362        0.000077
1997        0.443094       0.000280         0.441360        0.000077
1998        0.443092       0.000281         0.441357        0.000077
1999        0.443091       0.000280         0.441356        0.000077

In [11]:
num_round = 1900

bst = xgb.train(param_10, dtrain_10, num_round)

In [16]:
xgb.plot_importance(bst)


Out[16]:
<matplotlib.axes.AxesSubplot at 0x7fc3ff106690>

In [12]:
bst.save_model('bst_use_all_train.model')

In [ ]:
# dump model
bst= bst.dump_model('bst_use_all_train.model')

In [6]:
bst = xgb.Booster({'nthread':10}) #init model
bst.load_model("bst_use_all_train.model") # load data

In [18]:
dtest_10 = xgb.DMatrix(test_dataset_10_normalize.drop(['id'],axis =1,inplace = True), missing=np.nan)

In [ ]:
submission_10_all_train = pd.DataFrame()
submission_10_all_train = test_dataset_10_normalize['id'].copy()
submission_10_all_train['predict'] = bst.predict(dtest_10)

begin combine for all train model



In [ ]:
submission_11 = pd.read_csv('submission_11_new.csv',index_col = 0)

begin cross validation


In [21]:
num_round = 392

dtest_10 = xgb.DMatrix(test_dataset_10_normalize[predictors_10], missing=np.nan)
submission_10 = train_pivot_56789_to_10[['id']].copy()
i = 0

for i in range(20):
    train_pivot_xgb_time1_sample = train_dataset_10_normalize[predictors_target_10].sample(2000000)

    train_feature_10 = train_pivot_xgb_time1_sample.drop(['target'],axis = 1)
    train_label_10 = train_pivot_xgb_time1_sample[['target']]

    dtrain_10 = xgb.DMatrix(train_feature_10,label = train_label_10,missing= np.nan)
    
    bst = xgb.train(param_10, dtrain_10, num_round)
    print str(i) + 'training finished!'
    submission_10['predict_' + str(i)] = bst.predict(dtest_10)
    print str(i) + 'predicting finished!'


print 'finished'


0training finished!
0predicting finished!
1training finished!
1predicting finished!
2training finished!
2predicting finished!
3training finished!
3predicting finished!
4training finished!
4predicting finished!
5training finished!
5predicting finished!
6training finished!
6predicting finished!
7training finished!
7predicting finished!
8training finished!
8predicting finished!
9training finished!
9predicting finished!
10training finished!
10predicting finished!
11training finished!
11predicting finished!
12training finished!
12predicting finished!
13training finished!
13predicting finished!
14training finished!
14predicting finished!
15training finished!
15predicting finished!
16training finished!
16predicting finished!
17training finished!
17predicting finished!
18training finished!
18predicting finished!
19training finished!
19predicting finished!
finished

In [22]:
submission_10.to_csv('submission_10_new.csv')

In [26]:
# make prediction
xgb.plot_importance(bst)


Out[26]:
<matplotlib.axes.AxesSubplot at 0x7fc793a07dd0>

result for 44fea



In [13]:
submission_11['predict'] = submission_11[['predict_' + str(i) for i in range(20)]].mean(axis=1)

In [14]:
submission_11 = submission_11[['id','predict']]
gc.collect()
submission_11.head()


Out[14]:
id predict
0 1547831 4.406201
1 6825659 3.053817
2 5853787 2.684612
3 2316053 1.259826
4 900676 2.301486

In [24]:
submission_11.to_csv('submission_11_new.csv',index = False)

In [16]:
submission_44fea = pd.concat([submission_44fea,submission_11],axis =0,copy = False)

In [17]:
submission_44fea.shape


Out[17]:
(6999251, 2)

In [18]:
submission_44fea.rename(columns = {'predict':'Demanda_uni_equil'},inplace = True)
submission_44fea['Demanda_uni_equil'] = submission_44fea['Demanda_uni_equil'].apply(np.expm1)
submission_44fea.head()


Out[18]:
Semana id Demanda_uni_equil
0 1569352 10.206472
1 6667200 35.766411
2 1592616 17.642273
3 3909690 62.235741
4 3659672 34.847991

In [19]:
submission_44fea['Demanda_uni_equil'] = submission_44fea['Demanda_uni_equil'].round(1)

In [20]:
submission_44fea['Demanda_uni_equil'].describe()


Out[20]:
count    6.999251e+06
mean     6.075400e+00
std      1.606870e+01
min     -7.000000e-01
25%      1.900000e+00
50%      3.100000e+00
75%      5.600000e+00
max      2.879800e+03
Name: Demanda_uni_equil, dtype: float64

In [21]:
mask = submission_44fea[submission_44fea['Demanda_uni_equil'] <= 0].index
submission_44fea.loc[mask,'Demanda_uni_equil'] = 0
submission_44fea['Demanda_uni_equil'].describe()


Out[21]:
count    6.999251e+06
mean     6.074749e+00
std      1.606832e+01
min      0.000000e+00
25%      1.900000e+00
50%      3.100000e+00
75%      5.600000e+00
max      2.879800e+03
Name: Demanda_uni_equil, dtype: float64

In [22]:
submission_44fea.head()


Out[22]:
Semana id Demanda_uni_equil
0 1569352 10.2
1 6667200 35.8
2 1592616 17.6
3 3909690 62.2
4 3659672 34.8

In [23]:
submission_44fea.to_csv('submission_44fea.csv',index = False)

combine week10 and week11



In [12]:
submission_10 = pd.read_csv('submission_10.csv',index_col = 0)

In [22]:
submission_10.shape


Out[22]:
(3538385, 21)

In [23]:
submission_10.columns.values


Out[23]:
array(['id', 'predict_0', 'predict_1', 'predict_2', 'predict_3',
       'predict_4', 'predict_5', 'predict_6', 'predict_7', 'predict_8',
       'predict_9', 'predict_10', 'predict_11', 'predict_12', 'predict_13',
       'predict_14', 'predict_15', 'predict_16', 'predict_17',
       'predict_18', 'predict_19'], dtype=object)

In [26]:
submission_11.columns.values


Out[26]:
array(['id', 'predict_0', 'predict_1', 'predict_2', 'predict_3',
       'predict_4', 'predict_5', 'predict_6', 'predict_7', 'predict_8',
       'predict_9', 'predict_10', 'predict_11', 'predict_12', 'predict_13',
       'predict_14', 'predict_15', 'predict_16', 'predict_17',
       'predict_18', 'predict_19'], dtype=object)

In [27]:
submission = pd.concat([submission_10,submission_11],axis = 0)

In [28]:
submission.head()


Out[28]:
Semana id predict_0 predict_1 predict_2 predict_3 predict_4 predict_5 predict_6 predict_7 predict_8 ... predict_10 predict_11 predict_12 predict_13 predict_14 predict_15 predict_16 predict_17 predict_18 predict_19
0 1569352 1.570254 2.058795 2.034031 2.030173 2.360505 2.103804 2.306178 2.905277 2.163551 ... 2.337900 2.052084 1.988659 2.145079 1.940696 1.745424 1.975164 1.969749 2.098094 2.157057
1 6667200 3.562964 3.605132 3.617031 3.654797 3.647879 3.615349 3.648028 3.547087 3.555520 ... 3.617610 3.678215 3.664827 3.635223 3.621170 3.587815 3.619729 3.626218 3.718844 3.676515
2 1592616 3.095027 3.052559 2.981558 2.946887 2.818832 2.871925 2.925531 2.865346 2.925287 ... 3.030976 3.111521 3.083862 2.991664 3.072153 2.873937 2.984680 2.915040 3.102967 3.057709
3 3909690 4.199105 4.092796 4.173037 4.114638 4.228617 4.108154 4.186193 4.186264 4.168976 ... 4.217747 4.271296 4.210735 4.131866 4.077342 4.124441 4.189803 4.178765 4.237868 4.161020
4 3659672 3.582508 3.632398 3.602768 3.671225 3.653172 3.627649 3.626319 3.613807 3.573425 ... 3.626101 3.640444 3.641191 3.594605 3.645134 3.609037 3.617180 3.677435 3.683105 3.669554

5 rows × 21 columns


In [29]:
submission['predict'] = submission[['predict_' + str(i) for i in range(20)]].mean(axis=1)

In [30]:
submission.head()


Out[30]:
Semana id predict_0 predict_1 predict_2 predict_3 predict_4 predict_5 predict_6 predict_7 predict_8 ... predict_11 predict_12 predict_13 predict_14 predict_15 predict_16 predict_17 predict_18 predict_19 predict
0 1569352 1.570254 2.058795 2.034031 2.030173 2.360505 2.103804 2.306178 2.905277 2.163551 ... 2.052084 1.988659 2.145079 1.940696 1.745424 1.975164 1.969749 2.098094 2.157057 2.122850
1 6667200 3.562964 3.605132 3.617031 3.654797 3.647879 3.615349 3.648028 3.547087 3.555520 ... 3.678215 3.664827 3.635223 3.621170 3.587815 3.619729 3.626218 3.718844 3.676515 3.627489
2 1592616 3.095027 3.052559 2.981558 2.946887 2.818832 2.871925 2.925531 2.865346 2.925287 ... 3.111521 3.083862 2.991664 3.072153 2.873937 2.984680 2.915040 3.102967 3.057709 2.989878
3 3909690 4.199105 4.092796 4.173037 4.114638 4.228617 4.108154 4.186193 4.186264 4.168976 ... 4.271296 4.210735 4.131866 4.077342 4.124441 4.189803 4.178765 4.237868 4.161020 4.173270
4 3659672 3.582508 3.632398 3.602768 3.671225 3.653172 3.627649 3.626319 3.613807 3.573425 ... 3.640444 3.641191 3.594605 3.645134 3.609037 3.617180 3.677435 3.683105 3.669554 3.633988

5 rows × 22 columns


In [32]:
submission.rename(columns = {'predict':'Demanda_uni_equil'},inplace = True)
submission['Demanda_uni_equil'] = submission['Demanda_uni_equil'].apply(np.expm1)
submission.head()


Out[32]:
Semana id predict_0 predict_1 predict_2 predict_3 predict_4 predict_5 predict_6 predict_7 predict_8 ... predict_11 predict_12 predict_13 predict_14 predict_15 predict_16 predict_17 predict_18 predict_19 Demanda_uni_equil
0 1569352 1.570254 2.058795 2.034031 2.030173 2.360505 2.103804 2.306178 2.905277 2.163551 ... 2.052084 1.988659 2.145079 1.940696 1.745424 1.975164 1.969749 2.098094 2.157057 7.354917
1 6667200 3.562964 3.605132 3.617031 3.654797 3.647879 3.615349 3.648028 3.547087 3.555520 ... 3.678215 3.664827 3.635223 3.621170 3.587815 3.619729 3.626218 3.718844 3.676515 36.618239
2 1592616 3.095027 3.052559 2.981558 2.946887 2.818832 2.871925 2.925531 2.865346 2.925287 ... 3.111521 3.083862 2.991664 3.072153 2.873937 2.984680 2.915040 3.102967 3.057709 18.883251
3 3909690 4.199105 4.092796 4.173037 4.114638 4.228617 4.108154 4.186193 4.186264 4.168976 ... 4.271296 4.210735 4.131866 4.077342 4.124441 4.189803 4.178765 4.237868 4.161020 63.927416
4 3659672 3.582508 3.632398 3.602768 3.671225 3.653172 3.627649 3.626319 3.613807 3.573425 ... 3.640444 3.641191 3.594605 3.645134 3.609037 3.617180 3.677435 3.683105 3.669554 36.863517

5 rows × 22 columns


In [33]:
submission_final = submission[['id','Demanda_uni_equil']].copy()

In [34]:
submission_final['Demanda_uni_equil'] = submission_final['Demanda_uni_equil'].round(1)

In [35]:
submission_final.head()


Out[35]:
Semana id Demanda_uni_equil
0 1569352 7.4
1 6667200 36.6
2 1592616 18.9
3 3909690 63.9
4 3659672 36.9

In [36]:
submission_final.to_csv('submission_xgb_2.csv',index = False)