In [16]:
    
from astropy.table import Table, Column, hstack
import numpy as np
    
In [28]:
    
arr = np.arange(15).reshape(5, 3)
print(arr)
t = Table(arr, names=('a', 'b', 'c'), meta={'keywords': {'key1': 'val1'}})
print(t)
aa = Column(np.arange(5), name='aa')
print(aa)
t.add_column(aa, index=0)  # Insert before the first table column
print(t)
bb = Column(np.arange(5))
t.add_column(bb, name='bb')  # Append unnamed column to the table with 'bb' as name
print(t)
t2 = Table(np.arange(25).reshape(5, 5), names=('e', 'f', 'g', 'h', 'i'))
print(t2)
t.add_columns(t2.columns.values())
print(t)
print(t2)
    
    
In [2]:
    
t2.columns['e', 'f'].values()
    
    Out[2]:
In [3]:
    
x = t['a', 'b', 'c']
x
    
    Out[3]:
In [4]:
    
t
    
    Out[4]:
In [5]:
    
y = t.remove_column('a')
y
    
In [6]:
    
t
    
    Out[6]:
In [7]:
    
x = t
    
In [8]:
    
x
    
    Out[8]:
In [9]:
    
t.remove_column('f')
    
In [10]:
    
x
    
    Out[10]:
In [11]:
    
y = x[[True, False, True, False, True]]
    
In [12]:
    
y
    
    Out[12]:
In [13]:
    
x
    
    Out[13]:
In [14]:
    
t1 = Table.read("""a   b    c
                   1   foo  1.4
                   2   bar  2.1
                   3   baz  2.8""", format='ascii')
t2 = Table.read("""d     e
                   ham   eggs
                   spam  toast""", format='ascii')
t3 = Table.read("""a    b
                   M45  2012-02-03""", format='ascii')
    
In [19]:
    
x = hstack([t1, t2, t3])
print(x)
    
    
In [21]:
    
import numpy.ma as ma
    
In [22]:
    
x = np.array([1, 2, 3, -1, 5])
    
In [23]:
    
mx = ma.masked_array(x, mask=[0, 0, 0, 1, 0])
mx
    
    Out[23]:
In [24]:
    
mx.data
    
    Out[24]:
In [25]:
    
np.mean(mx.data)
    
    Out[25]:
In [26]:
    
np.mean(mx)
    
    Out[26]:
In [27]:
    
print(mx)
print(x)
    
    
In [ ]: