In [ ]:
%matplotlib inline
In [39]:
import matplotlib.pyplot as plt
import pandas as pd
from sktracker import data
from sktracker.trajectories import Trajectories
from sktracker.io import TiffFile
In [3]:
trajs = Trajectories(data.brownian_trajectories_generator())
trajs.show(groupby_args={'by': 'true_label'})
Out[3]:
In [4]:
trajs = Trajectories(data.directed_trajectories_generator())
trajs.show(groupby_args={'by': 'true_label'})
Out[4]:
In [5]:
tf = TiffFile(data.CZT_peaks())
arr = tf.asarray()
print("Shape is :", arr.shape)
a = arr[0, 0, 0]
plt.imshow(a, interpolation='none', cmap='gray')
Out[5]:
In [44]:
df = pd.HDFStore(data.sample_h5())
print(df.keys())
print(df['metadata'])
See also :
- `sample_ome()`
- `tubhiswt_4D()`
- `stack_list_dir()`
- `TZ_nucleus`
- `TC_BF_cells()`
- `metadata_json()`
- `sample_h5_temp()`
- `brownian_trajs_df()`
- `directed_motion_trajs_df()`
- `trackmate_xml_temp()`
- `trackmate_xml()`
- `with_gaps_d()`
available in the API references.
In [ ]:
# Run this cell first.
%load_ext autoreload
%autoreload 2