Epoch 1/100
511/512 [============================>.] - ETA: 0s - loss: 2.3457 - sparse_categorical_accuracy: 0.4483 Epoch 00000: val_loss improved from inf to 1.80832, saving model to /home/bmcfee/working/chords/model_simple_ckpt.pkl
512/512 [==============================] - 197s - loss: 2.3445 - sparse_categorical_accuracy: 0.4485 - val_loss: 1.8083 - val_sparse_categorical_accuracy: 0.5395
Epoch 2/100
511/512 [============================>.] - ETA: 0s - loss: 1.4239 - sparse_categorical_accuracy: 0.6095 Epoch 00003: val_loss improved from 1.66777 to 1.58986, saving model to /home/bmcfee/working/chords/model_simple_ckpt.pkl
512/512 [==============================] - 195s - loss: 1.4236 - sparse_categorical_accuracy: 0.6095 - val_loss: 1.5899 - val_sparse_categorical_accuracy: 0.5733
Epoch 5/100
511/512 [============================>.] - ETA: 0s - loss: 1.3297 - sparse_categorical_accuracy: 0.6245 Epoch 00007: val_loss improved from 1.54633 to 1.51215, saving model to /home/bmcfee/working/chords/model_simple_ckpt.pkl
512/512 [==============================] - 196s - loss: 1.3296 - sparse_categorical_accuracy: 0.6245 - val_loss: 1.5121 - val_sparse_categorical_accuracy: 0.5923
Epoch 9/100
511/512 [============================>.] - ETA: 0s - loss: 1.2968 - sparse_categorical_accuracy: 0.6313 Epoch 00009: val_loss did not improve
512/512 [==============================] - 197s - loss: 1.2967 - sparse_categorical_accuracy: 0.6313 - val_loss: 1.5207 - val_sparse_categorical_accuracy: 0.5889
Epoch 11/100
511/512 [============================>.] - ETA: 0s - loss: 1.3041 - sparse_categorical_accuracy: 0.6323 Epoch 00010: val_loss did not improve
512/512 [==============================] - 194s - loss: 1.3037 - sparse_categorical_accuracy: 0.6324 - val_loss: 1.5871 - val_sparse_categorical_accuracy: 0.5798
Epoch 12/100
511/512 [============================>.] - ETA: 0s - loss: 1.3037 - sparse_categorical_accuracy: 0.6303 Epoch 00011: val_loss did not improve
512/512 [==============================] - 195s - loss: 1.3036 - sparse_categorical_accuracy: 0.6304 - val_loss: 1.6174 - val_sparse_categorical_accuracy: 0.5757
Epoch 13/100
511/512 [============================>.] - ETA: 0s - loss: 1.2806 - sparse_categorical_accuracy: 0.6366 Epoch 00012: val_loss did not improve
512/512 [==============================] - 196s - loss: 1.2805 - sparse_categorical_accuracy: 0.6366 - val_loss: 1.5470 - val_sparse_categorical_accuracy: 0.5924
Epoch 14/100
511/512 [============================>.] - ETA: 0s - loss: 1.2550 - sparse_categorical_accuracy: 0.6419 Epoch 00013: val_loss improved from 1.51215 to 1.48914, saving model to /home/bmcfee/working/chords/model_simple_ckpt.pkl
512/512 [==============================] - 196s - loss: 1.2550 - sparse_categorical_accuracy: 0.6419 - val_loss: 1.4891 - val_sparse_categorical_accuracy: 0.6023
Epoch 15/100
511/512 [============================>.] - ETA: 0s - loss: 1.2686 - sparse_categorical_accuracy: 0.6378 Epoch 00014: val_loss did not improve
512/512 [==============================] - 207s - loss: 1.2680 - sparse_categorical_accuracy: 0.6379 - val_loss: 1.5239 - val_sparse_categorical_accuracy: 0.5801
Epoch 16/100
511/512 [============================>.] - ETA: 0s - loss: 1.2715 - sparse_categorical_accuracy: 0.6426 Epoch 00015: val_loss did not improve
512/512 [==============================] - 199s - loss: 1.2719 - sparse_categorical_accuracy: 0.6425 - val_loss: 1.4921 - val_sparse_categorical_accuracy: 0.5946
Epoch 17/100
511/512 [============================>.] - ETA: 0s - loss: 1.2600 - sparse_categorical_accuracy: 0.6418 Epoch 00016: val_loss improved from 1.48914 to 1.44601, saving model to /home/bmcfee/working/chords/model_simple_ckpt.pkl
512/512 [==============================] - 196s - loss: 1.2606 - sparse_categorical_accuracy: 0.6416 - val_loss: 1.4460 - val_sparse_categorical_accuracy: 0.6171
Epoch 18/100
511/512 [============================>.] - ETA: 0s - loss: 1.2261 - sparse_categorical_accuracy: 0.6501 Epoch 00017: val_loss did not improve
512/512 [==============================] - 197s - loss: 1.2262 - sparse_categorical_accuracy: 0.6500 - val_loss: 1.4981 - val_sparse_categorical_accuracy: 0.6020
Epoch 19/100
511/512 [============================>.] - ETA: 0s - loss: 1.2380 - sparse_categorical_accuracy: 0.6478 Epoch 00018: val_loss did not improve
512/512 [==============================] - 197s - loss: 1.2376 - sparse_categorical_accuracy: 0.6479 - val_loss: 1.5301 - val_sparse_categorical_accuracy: 0.5932
Epoch 20/100
511/512 [============================>.] - ETA: 0s - loss: 1.2266 - sparse_categorical_accuracy: 0.6462 Epoch 00019: val_loss did not improve
512/512 [==============================] - 197s - loss: 1.2267 - sparse_categorical_accuracy: 0.6461 - val_loss: 1.5115 - val_sparse_categorical_accuracy: 0.5881
Epoch 21/100
511/512 [============================>.] - ETA: 0s - loss: 1.2290 - sparse_categorical_accuracy: 0.6520 - ETA: 98s - loss: 1.2614 - sparse_categorical_accuracy: 0.6442Epoch 00020: val_loss did not improve
512/512 [==============================] - 198s - loss: 1.2292 - sparse_categorical_accuracy: 0.6518 - val_loss: 1.6350 - val_sparse_categorical_accuracy: 0.5738
Epoch 22/100
511/512 [============================>.] - ETA: 0s - loss: 1.1858 - sparse_categorical_accuracy: 0.6574 Epoch 00021: val_loss improved from 1.44601 to 1.44040, saving model to /home/bmcfee/working/chords/model_simple_ckpt.pkl
512/512 [==============================] - 198s - loss: 1.1860 - sparse_categorical_accuracy: 0.6573 - val_loss: 1.4404 - val_sparse_categorical_accuracy: 0.6109
Epoch 23/100
511/512 [============================>.] - ETA: 0s - loss: 1.1993 - sparse_categorical_accuracy: 0.6548 - ETA: 71s - loss: 1.2056 - sparse_categorical_accuracy: 0.6567Epoch 00022: val_loss did not improve
512/512 [==============================] - 196s - loss: 1.1993 - sparse_categorical_accuracy: 0.6548 - val_loss: 1.5373 - val_sparse_categorical_accuracy: 0.5985
Epoch 24/100
511/512 [============================>.] - ETA: 0s - loss: 1.1800 - sparse_categorical_accuracy: 0.6623 - ETA: 69s - loss: 1.1803 - sparse_categorical_accuracy: 0.6608Epoch 00023: val_loss did not improve
512/512 [==============================] - 194s - loss: 1.1800 - sparse_categorical_accuracy: 0.6623 - val_loss: 1.4788 - val_sparse_categorical_accuracy: 0.6130
Epoch 25/100
511/512 [============================>.] - ETA: 0s - loss: 1.1722 - sparse_categorical_accuracy: 0.6627 Epoch 00024: val_loss did not improve
512/512 [==============================] - 196s - loss: 1.1723 - sparse_categorical_accuracy: 0.6626 - val_loss: 1.6785 - val_sparse_categorical_accuracy: 0.5810
Epoch 26/100
511/512 [============================>.] - ETA: 0s - loss: 1.1876 - sparse_categorical_accuracy: 0.6603 Epoch 00025: val_loss did not improve
512/512 [==============================] - 195s - loss: 1.1878 - sparse_categorical_accuracy: 0.6602 - val_loss: 1.4536 - val_sparse_categorical_accuracy: 0.6151
Epoch 27/100
511/512 [============================>.] - ETA: 0s - loss: 1.1874 - sparse_categorical_accuracy: 0.6576 Epoch 00026: val_loss did not improve
512/512 [==============================] - 196s - loss: 1.1877 - sparse_categorical_accuracy: 0.6576 - val_loss: 1.5367 - val_sparse_categorical_accuracy: 0.5945
Epoch 28/100
511/512 [============================>.] - ETA: 0s - loss: 1.1657 - sparse_categorical_accuracy: 0.6623 Epoch 00027: val_loss did not improve
Epoch 00027: reducing learning rate to 0.00010000000474974513.
512/512 [==============================] - 195s - loss: 1.1656 - sparse_categorical_accuracy: 0.6623 - val_loss: 1.5004 - val_sparse_categorical_accuracy: 0.5951
Epoch 29/100
511/512 [============================>.] - ETA: 0s - loss: 1.1812 - sparse_categorical_accuracy: 0.6611 - ETA: 110s - loss: 1.1545 - sparse_categorical_accuracy: 0.6687Epoch 00028: val_loss did not improve
512/512 [==============================] - 194s - loss: 1.1812 - sparse_categorical_accuracy: 0.6610 - val_loss: 1.4789 - val_sparse_categorical_accuracy: 0.6013
Epoch 30/100
511/512 [============================>.] - ETA: 0s - loss: 1.1730 - sparse_categorical_accuracy: 0.6615 Epoch 00029: val_loss did not improve
512/512 [==============================] - 202s - loss: 1.1728 - sparse_categorical_accuracy: 0.6615 - val_loss: 1.4969 - val_sparse_categorical_accuracy: 0.6082
Epoch 31/100
511/512 [============================>.] - ETA: 0s - loss: 1.1757 - sparse_categorical_accuracy: 0.6603 - ETA: 116s - loss: 1.1620 - sparse_categorical_accuracy: 0.6626Epoch 00030: val_loss did not improve
512/512 [==============================] - 196s - loss: 1.1759 - sparse_categorical_accuracy: 0.6602 - val_loss: 1.4985 - val_sparse_categorical_accuracy: 0.6004
Epoch 32/100
511/512 [============================>.] - ETA: 0s - loss: 1.1591 - sparse_categorical_accuracy: 0.6629 - ETA: 44s - loss: 1.1567 - sparse_categorical_accuracy: 0.6627Epoch 00031: val_loss improved from 1.44040 to 1.40421, saving model to /home/bmcfee/working/chords/model_simple_ckpt.pkl
512/512 [==============================] - 196s - loss: 1.1594 - sparse_categorical_accuracy: 0.6628 - val_loss: 1.4042 - val_sparse_categorical_accuracy: 0.6259
Epoch 33/100
511/512 [============================>.] - ETA: 0s - loss: 1.1739 - sparse_categorical_accuracy: 0.6627