https://github.com/blab/antibody-response-pulse
In [1]:
'''
author: Alvason Zhenhua Li
date: 04/09/2015
'''
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
import os
from matplotlib.ticker import FuncFormatter
import alva_machinery_event_OAS_new as alva
AlvaFontSize = 23
AlvaFigSize = (15, 5)
numberingFig = 0
# plotting
dir_path = '/Users/al/Desktop/GitHub/antibody-response-pulse/bcell-array/figure'
file_name = 'Virus-Bcell-IgM-IgG'
figure_name = '-equation'
file_suffix = '.png'
save_figure = os.path.join(dir_path, file_name + figure_name + file_suffix)
numberingFig = numberingFig + 1
plt.figure(numberingFig, figsize=(12, 5))
plt.axis('off')
plt.title(r'$ Virus-Bcell-IgM-IgG \ equations \ (antibody-response \ for \ repeated-infection) $'
, fontsize = AlvaFontSize)
plt.text(0, 7.0/9, r'$ \frac{\partial V_n(t)}{\partial t} = \
+\mu_{v}V_{n}(t)(1 - \frac{V_n(t)}{V_{max}}) - \phi_{m} M_{n}(t) V_{n}(t) - \phi_{g} G_{n}(t) V_{n}(t) $'
, fontsize = 1.2*AlvaFontSize)
plt.text(0, 5.0/9, r'$ \frac{\partial B_n(t)}{\partial t} = \
+\mu_{b}V_{n}(t)(1 - \frac{V_n(t)}{V_{max}}) + (\beta_{m} + \beta_{g}) V_{n}(t) B_{n}(t) - \mu_{b} B_{n}(t) \
+ m_b V_{n}(t)\frac{B_{i-1}(t) - 2B_i(t) + B_{i+1}(t)}{(\Delta i)^2} $'
, fontsize = 1.2*AlvaFontSize)
plt.text(0, 3.0/9,r'$ \frac{\partial M_n(t)}{\partial t} = \
+\xi_{m} B_{n}(t) - \phi_{m} M_{n}(t) V_{n}(t) - \mu_{m} M_{n}(t) $'
, fontsize = 1.2*AlvaFontSize)
plt.text(0, 1.0/9,r'$ \frac{\partial G_n(t)}{\partial t} = \
+\xi_{g} B_{n}(t) - \phi_{g} G_{n}(t) V_{n}(t) - \mu_{g} G_{n}(t) \
+ m_a V_{n}(t)\frac{G_{i-1}(t) - 2G_i(t) + G_{i+1}(t)}{(\Delta i)^2} $'
, fontsize = 1.2*AlvaFontSize)
plt.savefig(save_figure, dpi = 100)
plt.show()
# define the V-M-G partial differential equations
def dVdt_array(VBMGxt = [], *args):
# naming
V = VBMGxt[0]
B = VBMGxt[1]
M = VBMGxt[2]
G = VBMGxt[3]
x_totalPoint = VBMGxt.shape[1]
# there are n dSdt
dV_dt_array = np.zeros(x_totalPoint)
# each dSdt with the same equation form
dV_dt_array[:] = +inRateV*V[:]*(1 - V[:]/maxV) - killRateVm*M[:]*V[:] - killRateVg*G[:]*V[:]
return(dV_dt_array)
def dBdt_array(VBMGxt = [], *args):
# naming
V = VBMGxt[0]
B = VBMGxt[1]
M = VBMGxt[2]
G = VBMGxt[3]
x_totalPoint = VBMGxt.shape[1]
# there are n dSdt
dB_dt_array = np.zeros(x_totalPoint)
# each dSdt with the same equation form
Bcopy = np.copy(B)
centerX = Bcopy[:]
leftX = np.roll(Bcopy[:], 1)
rightX = np.roll(Bcopy[:], -1)
leftX[0] = centerX[0]
rightX[-1] = centerX[-1]
dB_dt_array[:] = +inRateB*V[:]*(1 - V[:]/maxV) + (actRateBm + alva.event_active + alva.event_OAS_B)*V[:]*B[:] - outRateB*B[:] \
+ mutatRateB*V[:]*(leftX[:] - 2*centerX[:] + rightX[:])/(dx**2)
return(dB_dt_array)
def dMdt_array(VBMGxt = [], *args):
# naming
V = VBMGxt[0]
B = VBMGxt[1]
M = VBMGxt[2]
G = VBMGxt[3]
x_totalPoint = VBMGxt.shape[1]
# there are n dSdt
dM_dt_array = np.zeros(x_totalPoint)
# each dSdt with the same equation form
dM_dt_array[:] = +inRateM*B[:] - consumeRateM*M[:]*V[:] - outRateM*M[:]
return(dM_dt_array)
def dGdt_array(VBMGxt = [], *args):
# naming
V = VBMGxt[0]
B = VBMGxt[1]
M = VBMGxt[2]
G = VBMGxt[3]
x_totalPoint = VBMGxt.shape[1]
# there are n dSdt
dG_dt_array = np.zeros(x_totalPoint)
# each dSdt with the same equation form
Gcopy = np.copy(G)
centerX = Gcopy[:]
leftX = np.roll(Gcopy[:], 1)
rightX = np.roll(Gcopy[:], -1)
leftX[0] = centerX[0]
rightX[-1] = centerX[-1]
dG_dt_array[:] = +(inRateG + alva.event_OAS)*B[:] - consumeRateG*G[:]*V[:] - outRateG*G[:] \
+ mutatRateA*(leftX[:] - 2*centerX[:] + rightX[:])/(dx**2)
return(dG_dt_array)
In [2]:
# setting parameter
timeUnit = 'day'
if timeUnit == 'hour':
hour = float(1)
day = float(24)
elif timeUnit == 'day':
day = float(1)
hour = float(1)/24
elif timeUnit == 'year':
year = float(1)
day = float(1)/365
hour = float(1)/24/365
maxV = float(50) # max virus/micro-liter
inRateV = 0.2/hour # in-rate of virus
killRateVm = 0.0003/hour # kill-rate of virus by antibody-IgM
killRateVg = killRateVm # kill-rate of virus by antibody-IgG
inRateB = 0.06/hour # in-rate of B-cell
outRateB = inRateB/8 # out-rate of B-cell
actRateBm = killRateVm # activation rate of naive B-cell
inRateM = 0.16/hour # in-rate of antibody-IgM from naive B-cell
outRateM = inRateM/1 # out-rate of antibody-IgM from naive B-cell
consumeRateM = killRateVm # consume-rate of antibody-IgM by cleaning virus
inRateG = inRateM/10 # in-rate of antibody-IgG from memory B-cell
outRateG = outRateM/250 # out-rate of antibody-IgG from memory B-cell
consumeRateG = killRateVg # consume-rate of antibody-IgG by cleaning virus
mutatRateB = 0.00003/hour # B-cell mutation rate
mutatRateA = 0.0001/hour # antibody mutation rate
# time boundary and griding condition
minT = float(0)
maxT = float(6*28*day)
totalPoint_T = int(1*10**3 + 1)
gT = np.linspace(minT, maxT, totalPoint_T)
spacingT = np.linspace(minT, maxT, num = totalPoint_T, retstep = True)
gT = spacingT[0]
dt = spacingT[1]
# space boundary and griding condition
minX = float(0)
maxX = float(3)
totalPoint_X = int(maxX - minX + 1)
gX = np.linspace(minX, maxX, totalPoint_X)
gridingX = np.linspace(minX, maxX, num = totalPoint_X, retstep = True)
gX = gridingX[0]
dx = gridingX[1]
gV_array = np.zeros([totalPoint_X, totalPoint_T])
gB_array = np.zeros([totalPoint_X, totalPoint_T])
gM_array = np.zeros([totalPoint_X, totalPoint_T])
gG_array = np.zeros([totalPoint_X, totalPoint_T])
# initial output condition
#gV_array[1, 0] = float(2)
#[pre-parameter, post-parameter, recovered-day, OAS+, OSA-]
actRateBg_1st = 0.0002/hour # activation rate of memory B-cell at 1st time (pre-)
actRateBg_2nd = actRateBg_1st*10 # activation rate of memory B-cell at 2nd time (post-)
origin_virus = int(1)
event_parameter = np.array([[actRateBg_1st,
actRateBg_2nd,
14*day,
+5/hour,
-actRateBm - actRateBg_1st + (actRateBm + actRateBg_1st)/3,
origin_virus]])
# [viral population, starting time, first]
# [viral population, starting time] ---first
infection_period = 1*28*day
viral_population = np.zeros(int(maxX + 1))
viral_population[origin_virus:-1] = 3
infection_starting_time = np.arange(int(maxX + 1))*infection_period
event_1st = np.zeros([int(maxX + 1), 2])
event_1st[:, 0] = viral_population
event_1st[:, 1] = infection_starting_time
print ('event_1st = {:}'.format(event_1st))
# [viral population, starting time] ---2nd]
viral_population = np.zeros(int(maxX + 1))
viral_population[origin_virus:-1] = 0
infection_starting_time = np.arange(int(maxX + 1))*0
event_2nd = np.zeros([int(maxX + 1), 2])
event_2nd[:, 0] = viral_population
event_2nd[:, 1] = infection_starting_time
print ('event_2nd = {:}'.format(event_2nd))
event_table = np.array([event_parameter, event_1st, event_2nd])
# Runge Kutta numerical solution
pde_array = np.array([dVdt_array, dBdt_array, dMdt_array, dGdt_array])
initial_Out = np.array([gV_array, gB_array, gM_array, gG_array])
gOut_array = alva.AlvaRungeKutta4XT(pde_array, initial_Out, minX, maxX, totalPoint_X, minT, maxT, totalPoint_T, event_table)
# plotting
gV = gOut_array[0]
gB = gOut_array[1]
gM = gOut_array[2]
gG = gOut_array[3]
numberingFig = numberingFig + 1
for i in range(totalPoint_X):
figure_name = '-response-%i'%(i)
figure_suffix = '.png'
save_figure = os.path.join(dir_path, file_name + figure_name + file_suffix)
plt.figure(numberingFig, figsize = AlvaFigSize)
plt.plot(gT, gV[i], color = 'red', label = r'$ V_{%i}(t) $'%(i), linewidth = 3.0, alpha = 0.5)
plt.plot(gT, gM[i], color = 'blue', label = r'$ IgM_{%i}(t) $'%(i), linewidth = 3.0, alpha = 0.5)
plt.plot(gT, gG[i], color = 'green', label = r'$ IgG_{%i}(t) $'%(i), linewidth = 3.0, alpha = 0.5)
plt.plot(gT, gM[i] + gG[i], color = 'gray', linewidth = 5.0, alpha = 0.5, linestyle = 'dashed'
, label = r'$ IgM_{%i}(t) + IgG_{%i}(t) $'%(i, i))
plt.grid(True, which = 'both')
plt.title(r'$ Antibody \ from \ Virus-{%i} $'%(i), fontsize = AlvaFontSize)
plt.xlabel(r'$time \ (%s)$'%(timeUnit), fontsize = AlvaFontSize)
plt.ylabel(r'$ Neutralization \ \ titer $', fontsize = AlvaFontSize)
plt.xlim([minT, maxT])
plt.xticks(fontsize = AlvaFontSize*0.6)
plt.yticks(fontsize = AlvaFontSize*0.6)
plt.ylim([2**0, 2**14])
plt.yscale('log', basey = 2)
plt.legend(loc = (1,0), fontsize = AlvaFontSize)
plt.savefig(save_figure, dpi = 100)
plt.show()
In [3]:
# Experimental lab data from OAS paper
gT_lab = np.array([28, 28 + 7, 28 + 14, 28 + 28]) + 28
gPR8_lab = np.array([2**(9 + 1.0/10), 2**(13 - 1.0/5), 2**(13 + 1.0/3), 2**(13 - 1.0/4)])
standard_PR8 = gPR8_lab**(3.0/4)
gFM1_lab = np.array([0, 2**(6 - 1.0/5), 2**(7 - 1.0/4), 2**(8 + 1.0/4)])
standard_FM1 = gFM1_lab**(3.0/4)
bar_width = 2.0
# Sequential immunization graph
numberingFig = numberingFig + 1
plt.figure(numberingFig, figsize = (12, 6))
plt.subplot(111)
plt.plot(gT, (gM[origin_virus] + gG[origin_virus]), linewidth = 5.0, alpha = 0.5, color = 'gray'
, label = r'$ Origin-virus $')
plt.plot(gT, (gM[origin_virus + 1] + gG[origin_virus + 1]), linewidth = 5.0, alpha = 0.5, color = 'red'
, label = r'$ Subsequence-virus $')
plt.bar(gT_lab - bar_width/2, gPR8_lab, bar_width, alpha = 0.6, color = 'gray', yerr = standard_PR8
, error_kw = dict(elinewidth = 1, ecolor = 'black'), label = r'$ PR8-virus $')
plt.bar(gT_lab + bar_width/2, gFM1_lab, bar_width, alpha = 0.6, color = 'red', yerr = standard_FM1
, error_kw = dict(elinewidth = 1, ecolor = 'black'), label = r'$ FM1-virus $')
plt.grid(True, which = 'both')
plt.title(r'$ Original \ Antigenic \ Sin \ (sequential-infection)$', fontsize = AlvaFontSize)
plt.xlabel(r'$time \ (%s)$'%(timeUnit), fontsize = AlvaFontSize)
plt.ylabel(r'$ Neutralization \ \ titer $', fontsize = AlvaFontSize)
plt.xticks(fontsize = AlvaFontSize*0.6)
plt.yticks(fontsize = AlvaFontSize*0.6)
plt.xlim([minT, 6*30*day])
plt.ylim([2**5, 2**14])
plt.yscale('log', basey = 2)
# gca()---GetCurrentAxis and Format the ticklabel to be 2**x
plt.gca().yaxis.set_major_formatter(FuncFormatter(lambda x, pos: int(2**(np.log(x)/np.log(2)))))
#plt.gca().xaxis.set_major_locator(plt.MultipleLocator(7))
plt.legend(loc = (1, 0), fontsize = AlvaFontSize)
plt.show()
In [4]:
# Experimental lab data from OAS paper
gT_lab = np.array([28, 28 + 7, 28 + 14, 28 + 28]) + 28
gPR8_lab = np.array([2**(9 + 1.0/10), 2**(13 - 1.0/5), 2**(13 + 1.0/3), 2**(13 - 1.0/4)])
standard_PR8 = gPR8_lab**(3.0/4)
gFM1_lab = np.array([0, 2**(6 - 1.0/5), 2**(7 - 1.0/4), 2**(8 + 1.0/4)])
standard_FM1 = gFM1_lab**(3.0/4)
bar_width = 1.0
# Sequential immunization graph
figure_name = '-Original-Antigenic-Sin-infection'
figure_suffix = '.png'
save_figure = os.path.join(dir_path, file_name + figure_name + file_suffix)
numberingFig = numberingFig + 1
plt.figure(numberingFig, figsize = (12, 6))
plt.subplot(111)
plt.plot(gT, (gM[origin_virus] + gG[origin_virus]), linewidth = 5.0, alpha = 0.5, color = 'gray'
, label = r'$ Origin-virus $')
plt.plot(gT, (gM[origin_virus + 1] + gG[origin_virus + 1]), linewidth = 5.0, alpha = 0.5, color = 'red'
, label = r'$ Subsequence-virus $')
plt.bar(gT_lab - bar_width/2, gPR8_lab, bar_width, alpha = 0.6, color = 'gray', yerr = standard_PR8
, error_kw = dict(elinewidth = 1, ecolor = 'black'), label = r'$ PR8-virus $')
plt.bar(gT_lab + bar_width/2, gFM1_lab, bar_width, alpha = 0.6, color = 'red', yerr = standard_FM1
, error_kw = dict(elinewidth = 1, ecolor = 'black'), label = r'$ FM1-virus $')
plt.grid(True, which = 'both')
plt.title(r'$ Original \ Antigenic \ Sin \ (sequential-infection)$', fontsize = AlvaFontSize)
plt.xlabel(r'$time \ (%s)$'%(timeUnit), fontsize = AlvaFontSize)
plt.ylabel(r'$ Neutralization \ \ titer $', fontsize = AlvaFontSize)
plt.xticks(fontsize = AlvaFontSize*0.6)
plt.yticks(fontsize = AlvaFontSize*0.6)
plt.xlim([minT, 3*30*day])
plt.ylim([2**5, 2**14])
plt.yscale('log', basey = 2)
# gca()---GetCurrentAxis and Format the ticklabel to be 2**x
plt.gca().yaxis.set_major_formatter(FuncFormatter(lambda x, pos: int(2**(np.log(x)/np.log(2)))))
plt.gca().xaxis.set_major_locator(plt.MultipleLocator(7))
plt.legend(loc = (1, 0), fontsize = AlvaFontSize)
plt.savefig(save_figure, dpi = 100, bbox_inches='tight')
plt.show()
In [ ]: