In [1]:
import seaborn as sns
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
In [2]:
df = pd.read_csv('~/project-data.csv')
df.drop(df.columns[[0,1]], axis=1, inplace=True)
df.shape
Out[2]:
In [3]:
df.columns
Out[3]:
In [4]:
df.info()
In [5]:
sns.set(style='ticks')
sns.lmplot(y='PRLMISAB',x='HEROINUSE',data=df)
Out[5]:
In [6]:
sns.lmplot(y='PRLMISAB',x='HEROINUSE',hue='CTYMETRO',data=df)
p = sns.lmplot(y='PRLMISAB',x='HEROINUSE',hue='CTYMETRO',data=df)
p.savefig('fancy-regression-chart.png')
In [7]:
sns.factorplot(x='HEROINEVR', hue='PRLMISEVR',col='SEX',kind='count',data=df)
Out[7]:
In [8]:
'AGECAT', 'SEX', 'MARRIED', 'EDUCAT', 'EMPLOY18', 'CTYMETRO', 'HEALTH',
'MENTHLTH', 'SUICATT', 'PRLMISEVR', 'PRLMISAB', 'PRLANY', 'HEROINEVR',
'HEROINUSE', 'HEROINFQY', 'TRQLZRS', 'SEDATVS', 'COCAINE', 'AMPHETMN',
'TRTMENT', 'MHTRTMT'
Out[8]:
In [9]:
df1 = df[['MENTHLTH','PRLMISAB','HEROINUSE','CTYMETRO']]
sns.pairplot(df1, hue = 'CTYMETRO',size=2.5);
plt.savefig('Figure3.png', bbox_inches='tight')
In [10]:
df1 = df[['AGECAT','SEX','PRLMISAB','HEROINUSE']]
sns.pairplot(df1, hue = 'SEX',size=2.5);
In [ ]: